【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見(jiàn)的數(shù)學(xué)問(wèn)題,中國(guó)古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說(shuō),要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).

例如:求91與56的最大公約數(shù)

解:

請(qǐng)用以上方法解決下列問(wèn)題:

(1)求108與45的最大公約數(shù);

(2)求三個(gè)數(shù)78、104、143的最大公約數(shù).

【答案】(1)9;(2)13

【解析】

試題分析:(1)根據(jù)題目,首先弄懂題意,然后根據(jù)例子寫(xiě)出答案即可;

(2)可以先求出104與78的最大公約數(shù)為 26,再利用輾轉(zhuǎn)相除法,我們可以求出26 143的最大公約數(shù)為13,進(jìn)而得到答案.

試題解析:(1)108﹣45=63,63﹣45=18,27﹣18=9,18﹣9=9,所以108與45的最大公約數(shù)是9;

(2)先求104與78的最大公約數(shù),104﹣78=26,78﹣26=52,52﹣26=26,所以104與78的最大公約數(shù)是26;

再求26與143的最大公約數(shù),143﹣26=117,117﹣26=91,91﹣26=65,65﹣26=39,39﹣26=13,26﹣13=13,所以,26與143的最大公約數(shù)是13,78、104、143的最大公約數(shù)是13.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你會(huì)對(duì)多項(xiàng)式(x2+5x+2)(x2+5x+3)12分解因式嗎?對(duì)結(jié)構(gòu)較復(fù)雜的多項(xiàng)式,若把其中某些部分看成一個(gè)整體,用新字母代替(即換元),能使復(fù)雜的問(wèn)題簡(jiǎn)單化、明朗化.從換元的個(gè)數(shù)看,有一元代換、二元代換等.

對(duì)于(x2+5x+2)(x2+5x+3)12

解法一:設(shè)x2+5xy

則原式=(y+2)(y+3)12y2+5y6(y+6)(y1)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法二:設(shè)x2+5x+2y,

則原式=y(y+1)12y2+y12(y+4)(y3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

解法三:設(shè)x2+2m,5xn,

則原式=(m+n)(m+n+1)12(m+n)2+(m+n)12(m+n+4)(m+n3)

(x2+5x+6)(x2+5x1)(x+2)(x+3)(x2+5x1)

按照上面介紹的方法對(duì)下列多項(xiàng)式分解因式:

(1)(x2+x4)(x2+x+3)+10;

(2)(x+1)(x+2)(x+3)(x+6)+x2;

(3)(x+y2xy)(x+y2)+(xy1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店經(jīng)銷(xiāo)一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷(xiāo)售量y個(gè))與銷(xiāo)售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷(xiāo)售利潤(rùn)為w元.

(1)求wx之間的函數(shù)關(guān)系式;

(2)該種健身球銷(xiāo)售單價(jià)定為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?

(3)如果物價(jià)部門(mén)規(guī)定這種健身球的銷(xiāo)售單價(jià)不高于28元,該商店銷(xiāo)售這種健身球每天要獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠B=40°,C=80°,ADBC邊上的高,AE平分∠BAC.

(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說(shuō)表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)的點(diǎn)之間的距離,這個(gè)結(jié)論可以推廣為表示數(shù)軸上對(duì)應(yīng)點(diǎn)之間的距離.

1:已知,求的值.

解:容易看出,在數(shù)軸上與原點(diǎn)距離為的點(diǎn)的對(duì)應(yīng)數(shù)為,即的值為

2:已知,求的值.

解:在數(shù)軸上與的距離為的點(diǎn)的對(duì)應(yīng)數(shù)為,即的值為

仿照閱讀材料的解法,求下列各式中的值.

1

2

3)由以上探索猜想:對(duì)于任何有理數(shù)是否有最小值?如果有,寫(xiě)出最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,給正五邊形的頂點(diǎn)依次編號(hào)為.若從某一頂點(diǎn)開(kāi)始,沿正五邊形的邊順時(shí)針行走,頂點(diǎn)編號(hào)的數(shù)字是幾,就走幾個(gè)邊長(zhǎng),則稱這種走法為一次“移位”.

:小宇同學(xué)從編號(hào)為的頂點(diǎn)開(kāi)始,他應(yīng)走個(gè)邊長(zhǎng),即從為第一次“移位”,這時(shí)他到達(dá)編號(hào)為的頂點(diǎn);然后從為第二次“移位”,....若小宇同學(xué)從編號(hào)為的頂點(diǎn)開(kāi)始,則第九十九次“移位”后他所處頂點(diǎn)的編號(hào)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓⊙O中,將弧AB沿弦AB折疊,使弧AB恰好經(jīng)過(guò)圓心O,點(diǎn)P是優(yōu)弧AMB上一點(diǎn),則∠APB的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCABBC,BEAC,∠1=∠2,AD=AB,則下列結(jié)論不正確的是

A. BF=DF B. ∠1=∠EFD C. BF>EF D. FDBC

查看答案和解析>>

同步練習(xí)冊(cè)答案