【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰?shù)眯凶叩穆肪為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為m.

【答案】4600
【解析】解:小敏走的路程為AB+AG+GE=1500+(AG+GE)=3100,
則AG+GE=1600m,
小聰走的路程為BA+AD+DE+EF=3000+(DE+EF).
連接CG,
在正方形ABCD中,∠ADG=∠CDG=45°,AD=CD,
在△ADG和△CDG中,

所以△ADG△CDG,
所以AG=CG.
又因為GE⊥CD,GF⊥BC,∠BCD=90°,
所以四邊形GECF是矩形,
所以CG=EF.
又因為∠CDG=45°,
所以DE=GE,
所以小聰走的路程為BA+AD+DE+EF=3000+(GE+AG)=3000+1600=4600(m).
所以答案是4600.
【考點精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)枇杷20噸,桃子12噸.現(xiàn)計劃租用甲、乙兩種貨車共8輛將這批水果運回,已知一輛甲種貨車可裝枇杷4噸和桃子1噸,一輛乙種貨車可裝枇杷和桃子各2噸.

1)如何安排甲、乙兩種貨車可一次性地運到?有幾種方案?

2)若甲種貨車每輛要付運輸費300元,乙種貨車每輛要付運輸費240元,則果商場應(yīng)選擇哪種方案,使運輸費最少?最少運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點A(2,﹣3)和點B(n,2).
(1)求直線與雙曲線的表達(dá)式;
(2)對于橫、縱坐標(biāo)都是整數(shù)的點給出名稱叫整點.動點P是雙曲線y= (m≠0)上的整點,過點P作垂直于x軸的直線,交直線AB于點Q,當(dāng)點P位于點Q下方時,請直接寫出整點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠AOC=146°,OD為∠AOC的平分線,∠AOB=90°,BOD的度數(shù)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的兩條對稱軸為坐標(biāo)軸,點A的坐標(biāo)為(2,1).一張透明紙上畫有一個點和一條拋物線,平移透明紙,這個點與點A重合,此時拋物線的函數(shù)表達(dá)式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數(shù)表達(dá)式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題。
(1)計算: .
(2)解不等式:4x+5≤2(x+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,BAC=90°,點D是直線AB上的一動點(不和A、B重合),BECDE,交直線ACF.

(1)D在邊AB上時,請證明:BD=AB﹣AF;

(2)試探索:點DAB的延長線或反向延長線上時,請在備用圖中畫出圖形,(1)中的結(jié)論是否成立?若不成立,請直接寫出正確結(jié)論(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知ABCD,AB//x軸,AB=6,點A的坐標(biāo)為(1,-4),點D的坐標(biāo)為(-3,4),點B在第四象限,點P是ABCD邊上的一個動點.

(1)若點P在邊BC上,PD=CD,求點P的坐標(biāo).
(2)若點P在邊AB,AD上,點P關(guān)于坐標(biāo)軸對稱的點Q落在直線y=x-1上,求點P的坐標(biāo).
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當(dāng)點M的對應(yīng)點落在坐標(biāo)軸上時,求點P的坐標(biāo)(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BEGF,∠1=∠3,∠DBC=70°,求∠EDB的大。

閱讀下面的解答過程,并填空(理由或數(shù)學(xué)式)

解:∵BEGF(已知)

∴∠2=∠3(   )

∵∠1=∠3(   )

∴∠1=(   )(   )

DE∥(   )(   )

∴∠EDB+∠DBC=180°(   )

∴∠EDB=180°﹣∠DBC(等式性質(zhì))

∵∠DBC=(   )(已知)

∴∠EDB=180°﹣70°=110°

查看答案和解析>>

同步練習(xí)冊答案