【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.
(1)將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC.問(wèn):此時(shí)直線(xiàn)ON是否平分∠AOC?請(qǐng)說(shuō)明理由.
(2)將圖1中的三角板繞點(diǎn)O以每秒10°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,在旋轉(zhuǎn)的過(guò)程中,第t秒時(shí),直線(xiàn)ON恰好平分銳角∠AOC,則 t的值為 秒(直接寫(xiě)出結(jié)果).
(3)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)至圖3,使ON在∠AOC的內(nèi)部,試探索:在旋轉(zhuǎn)過(guò)程中,∠AOM與∠NOC的差是否發(fā)生變化?若不變,請(qǐng)求出這個(gè)差值;若變化,請(qǐng)求出差的變化范圍.
【答案】(1)直線(xiàn)ON平分∠AOC;(2)12或30秒;(3)差為定值30°.
【解析】試題分析:(1)直線(xiàn)ON平分∠AOC,設(shè)ON的反向延長(zhǎng)線(xiàn)為OD,已知OM平分∠BOC,根據(jù)角平分線(xiàn)的定義可得∠MOC=∠MOB,又由OM⊥ON,根據(jù)垂直的定義可得∠MOD=∠MON=90°,所以∠COD=∠BON,再根據(jù)對(duì)頂角相等可得∠AOD=∠BON,即可∴∠COD=∠AOD,結(jié)論得證;(1)已知∠BOC=120°,根據(jù)平角的定義可得∠AOC=60°,旋轉(zhuǎn)至直線(xiàn)ON恰好平分銳角∠AOC,可得旋轉(zhuǎn)120°或300°時(shí)ON平分∠AOC,由此可得10t=120°或300°,所以n=12或30;(3)差為定值30°,因?yàn)椤?/span>MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON,∠NOC=60°-∠AON,再根據(jù)角的的和差計(jì)算即可.
試題解析:
(1)直線(xiàn)ON平分∠AOC.理由:
設(shè)ON的反向延長(zhǎng)線(xiàn)為OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(對(duì)頂角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,即直線(xiàn)ON平分∠AOC.
(2)12或30秒
(3)差為定值30°
∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,
∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿(mǎn)足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類(lèi)推,則a2018的值為( )
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,P為AB上一點(diǎn),則下列四個(gè)條件中, ①∠ACP=∠B②∠APC=∠ACB③ ④ABCP=APCB ,
其中能滿(mǎn)足△APC和△ACB相似的條件有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是平行四邊形,點(diǎn)E在邊BC延長(zhǎng)線(xiàn)上,連AE交CD于點(diǎn)F , 如果∠EAC=∠D , 試問(wèn):ACBE與AECD是否相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小蘭和小潭分別用擲A、B兩枚骰子的方法來(lái)確定P(x,y)的位置,她們規(guī)定:小蘭擲得的點(diǎn)數(shù)為x,小譚擲得的點(diǎn)數(shù)為y,那么,她們各擲一次所確定的點(diǎn)落在已知直線(xiàn)y=-2x+6上的概率為()
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在同一平面內(nèi)OA⊥OB,OC是OA繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.
(1)若α=60即∠AOC=60°時(shí),求∠BOC,∠DOE.
(2)在α的變化過(guò)程中,∠DOE的度數(shù)是一個(gè)定值嗎?若是定值,請(qǐng)求出這個(gè)值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”黃金周期間,小明要與父母外出游玩,帶了2件上衣和3條長(zhǎng)褲(把衣服和褲子分別裝在兩個(gè)袋子里),上衣顏色有紅色、黃色,長(zhǎng)褲有紅色、黑色、黃色.
問(wèn)題為:
(1)小明隨意拿出一條褲子和一件上衣配成一套,用(畫(huà)樹(shù)狀圖或列表格)中的一種列出所有可能出現(xiàn)結(jié)果;
(2)配好一套衣服,小明正好拿到黑色長(zhǎng)褲的概率是多少;
(3)他任意拿出一件上衣和一條長(zhǎng)褲穿上的顏色正好相同的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具店進(jìn)了一排黑白塑料球,共5箱,每箱的規(guī)格、數(shù)量都相同,其中每箱中裝有黑白兩種顏色的塑料球共3000個(gè),為了估計(jì)每箱中兩種顏色球的個(gè)數(shù),隨機(jī)抽查了一箱,將箱子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回箱子中,多次重復(fù)上述過(guò)程后,發(fā)現(xiàn)摸到黑球的概率在0.8附近波動(dòng),則此可以估計(jì)這批塑料球中黑球的總個(gè)數(shù),請(qǐng)將黑球總個(gè)數(shù)用科學(xué)記數(shù)法表示約為個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過(guò)點(diǎn)E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);
②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com