【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
(1)如圖1,已知四邊形在正方形網(wǎng)格中,頂點都在格點上,判斷:四邊形______(填“是”或“不是”)以為“相似對角線”的四邊形;
(2)如圖,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;
(3)如圖,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.
【答案】(1)是;(2)見解析;(3)4.
【解析】
(1)先根據(jù)勾股定理計算出AB,BC的長,再得出,結(jié)合∠ABC=∠ACD=90°,可得出△ABC∽△ACD,從而可得出結(jié)果;
(2)先判斷出∠A+∠ADB=140°=∠ADC,從而可得出∠A=∠BDC,證明△ABD∽△DBC即可得出結(jié)論;
(3)由已知可知△FEH∽△FHG,得出FH2=FEFG;過點E作EQ⊥FG于Q,繼而得出EQ=FE,再結(jié)合的面積為求出FGFE=16,從而可得出結(jié)論.
(1)解:根據(jù)勾股定理得,
AB=,BC=,
又AC=5,∴AB2+BC2=AC2,∴∠ABC=90°=∠ACD,
∴,
∴,
∴△ABC∽△ACD,
∴四邊形ABCD是以AC為“相似對角線”的四邊形.
故答案為:是;
(2)證明:如圖2中,
∵∠ABC=80°,BD平分∠ABC,
∴∠ABD=∠DBC=40°,
∴∠A+∠ADB=140°
∵∠ADC=140°,
∴∠BDC+∠ADB=140°,
∴∠A=∠BDC,
∴△ABD∽△DBC,
∴BD是四邊形ABCD的“相似對角線”;
(3)解:如圖3,
∵FH是四邊形EFGH的“相似對角線”,
∴△EFH與△HFG相似,
∵∠EFH=∠HFG,
∴△FEH∽△FHG,,
∴FH2=FEFG,
過點E作EQ⊥FG于Q,
∵=30°,∴∠EFG=60°,
∴EQ=FEsin60°=FE,
,
∴,
∴FGFE=16,
∴FH2=FEFG=16,
∴FH=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進一步普及足球知識,傳播足球文化,某市在中小學(xué)舉行了“足球在身邊”知識競賽活動,各類獲獎學(xué)生人數(shù)的比例情況如圖所示,其中獲得三等獎的學(xué)生共50名,請結(jié)合圖中信息,解答下列問題:
(1)獲得一等獎的學(xué)生有 人;
(2)在本次知識競賽活動中,A,B,C,D 四所學(xué)校表現(xiàn)突出,現(xiàn)決定從這四所學(xué)校中隨機選取兩所學(xué)校舉行一場足球友誼賽,請用畫樹狀圖或列表的方法求恰好選到A,B兩所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了調(diào)查學(xué)生預(yù)防“新型冠狀病毒”知識的情況,在全校隨機抽取了一部分學(xué)生進行民意調(diào)查,調(diào)查結(jié)果分為A.B.C三個等級,其中A:非常了解,B:了解,C:不了解,并根據(jù)調(diào)查結(jié)果繪制了如下兩個不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖,解答下列問題:
(1)這次抽查的學(xué)生為 人;
(2)求等級A在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該校有學(xué)生2200人,請根據(jù)抽樣調(diào)查的結(jié)果,估計該校約有多少學(xué)生對預(yù)防新型冠狀病毒知識已經(jīng)了解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,為矩形邊上的一點,點從點沿折運動到點時停止,點從點沿運動到點時停止,它們運動的速度都是.若點,同時開始運動,設(shè)運動時間為,的面積為.已知與的函數(shù)關(guān)系圖象如圖②所示,則下列結(jié)論錯誤的是( )
A.B.
C.當時,D.當時,是等腰三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市某特產(chǎn)專賣店銷售一種蜜棗,每千克的進價為10元,銷售過程中發(fā)現(xiàn),每天銷量與銷售單價x(元)之間關(guān)系可以近似地看作一次函數(shù).(利潤=售價-進價)
(1)寫出每天的利潤w(元)與銷售單價x(元)之間函數(shù)解析式;
(2)當銷售單價定為多少元時,這種蜜棗每天能夠獲得最大利潤?最大利潤是多少元?
(3)物價部門規(guī)定,這種蜜棗的銷售單價不得高于30元.若商店想要這種蜜棗每天獲得300元的利潤,則銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郴州市正在創(chuàng)建“全國文明城市”,某校擬舉辦“創(chuàng)文知識”搶答賽,欲購買A、B兩種獎品以鼓勵搶答者.如果購買A種20件,B種15件,共需380元;如果購買A種15件,B種10件,共需280元.
(1)A、B兩種獎品每件各多少元?
(2)現(xiàn)要購買A、B兩種獎品共100件,總費用不超過900元,那么A種獎品最多購買多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為“創(chuàng)建文明城市,構(gòu)建和諧社會”,更好的提高垃圾分類意識,某小區(qū)決定安裝垃圾分類的溫馨提示牌和垃圾箱,若購買3個溫馨提示牌和4個垃圾箱共需580元,購買5個溫馨提示牌和2個垃圾箱共需500元.
(1)購買1個溫馨提示牌和1個垃圾箱各需多少元?
(2)如果需要購買溫馨提示牌和垃圾箱共100個,費用不超過8000元,問:最多購買垃圾箱多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明,小亮都想去觀看電影,但是只有一張電影票,他們決定采取抽卡片的辦法確定誰去,規(guī)定如下:將正面分別標有數(shù)字,,的三張卡片(除數(shù)字外其余都同)洗勻后背面朝上放置在桌面上,隨機抽出一張記下數(shù)字后放回,重新洗勻后背面朝上放置在桌面上,再隨機抽出一張記下數(shù)字,如果兩個數(shù)字的積為奇數(shù),則小明去;如果兩個數(shù)字的積為偶數(shù),則小亮去.
(1)請用列表或樹狀圖的方法表示抽出的兩張卡片上的數(shù)字積的所有可能出現(xiàn)的結(jié)果;
(2)你認為這個規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,∠BAD的平分線交BC于點E,過E作EF⊥AD于F.
(1)求證:四邊形ABEF是正方形;
(2)連接BF交AE于點O,連接DO,若CD=2,CE=1,求OD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com