【題目】某校為了調(diào)查學(xué)生預(yù)防“新型冠狀病毒”知識的情況,在全校隨機抽取了一部分學(xué)生進行民意調(diào)查,調(diào)查結(jié)果分為A.B.C三個等級,其中A:非常了解,B:了解,C:不了解,并根據(jù)調(diào)查結(jié)果繪制了如下兩個不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖,解答下列問題:
(1)這次抽查的學(xué)生為 人;
(2)求等級A在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)若該校有學(xué)生2200人,請根據(jù)抽樣調(diào)查的結(jié)果,估計該校約有多少學(xué)生對預(yù)防新型冠狀病毒知識已經(jīng)了解.
【答案】(1)500;(2)118.8°;(3)1958名
【解析】
(1)根據(jù)B等級人數(shù)以及百分比求出總?cè)藬?shù);
(2)先求出A等級人數(shù),然后用360°×A等級人數(shù)占總數(shù)的百分比即可解決問題.
(3)利用樣本估計總體的思想,用2200×(A等級與B等級對應(yīng)的百分比之和)即可解決問題即可.
解:(1)280÷56%=500人
故答案為:500;
(2)A等級人數(shù)為:500-280-55=165
∴A等級所占圓心角度數(shù)為:
(3)人
答:該校約有1958名學(xué)生對預(yù)防新型冠狀病毒知識已經(jīng)了解.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=6,點E是邊CD上的動點(點E不與端點C,D重合),AE的垂直平分線FG分別交AD,AE,BC于點F,H,G.當(dāng)=時,DE的長為( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線分別交x軸、y軸于點A(2,0)、B(0,4),點P是線段AB上一動點,過點P作PC⊥x軸于點C,交拋物線于點D.
(1)若.
①求拋物線的解析式;
②當(dāng)線段PD的長度最大時,求點P的坐標(biāo);
(2)當(dāng)點P的橫坐標(biāo)為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與△AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形以點為圓心,以任意長為半徑作弧分別交、于兩點,再分別以點為圓心,以大于的長為半徑作弧交于點,作射線交于點,若,則矩形的面積等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在和中,,,,點,,分別是,,的中點,連接,.
(1)如圖①,,點在上,則 ;
(2)如圖②,,點不在上,判斷的度數(shù),并證明你的結(jié)論;
(3)連接,若,,固定,將繞點旋轉(zhuǎn),當(dāng)的長最大時,的長為 (用含的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,E是對角線AC上一點.F是線段BC延長線上一點,且CF=AE連接BE
(1)發(fā)現(xiàn)問題:如圖①,若E是線段AC的中點,連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系
(2)探究問題:如圖②,若E是線段AC上任意一點,連接EF,其他條件不變,猜想線段BE與EF的數(shù)量關(guān)系是什么?請證明你的猜想
(3)解決問題:如圖③,若E是線段AC延長線上任意一點,其他條件不變,且∠EBC=30°,AB=3請直接寫出AF的長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直徑所對的半圓弧,點是與直徑所圍成圖形的外部的一個定點,,點是上一動點,連接交于點.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段,,,進行了研究,設(shè),兩點間的距離為,,兩點間的距離為,,兩點之間的距離為.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,分別對函數(shù),隨自變量的變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請補充完整:
(1)按照下表中自變量的值進行取點、畫圖、測量,分別得到了,與的幾組對應(yīng)值:
0.00 | 1.00 | 2.00 | 3.00 | 3.20 | 4.00 | 5.00 | 6.00 | 6.50 | 7.00 | … | |
0.00 | 1.04 | 2.09 | 3.11 | 3.30 | 4.00 | 4.41 | 3.46 | 2.50 | 1.53 | … | |
6.24 | 5.29 | 4.35 | 3.46 | 3.30 | 2.64 | 2.00 | 1.80 | 2.00 | … |
寫出表格中的值,_______________________(保留兩位小數(shù));
(2)在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象:
(3)結(jié)合函數(shù)圖象解決問題:當(dāng)時,的長度約為_____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
(1)如圖1,已知四邊形在正方形網(wǎng)格中,頂點都在格點上,判斷:四邊形______(填“是”或“不是”)以為“相似對角線”的四邊形;
(2)如圖,在四邊形中,,,對角線平分.求證:是四邊形的“相似對角線”;
(3)如圖,已知是四邊形的“相似對角線”,.連接,若的面積為,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC,∠BAC=60°,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)60°得到AE,連接EC,則:
(1)①∠ACE的度數(shù)是 ; ②線段AC,CD,CE之間的數(shù)量關(guān)系是 .
(2)如圖②,在△ABC中,AB=AC,∠BAC=90°,D為BC邊上一點(不與點B,C重合),將線段AD繞點A逆時針旋轉(zhuǎn)90°得到AE,連接EC,請判斷線段AC,CD,CE之間的數(shù)量關(guān)系,并說明理由;
(3)如圖②,AC與DE交于點F,在(2)條件下,若AC=8,求AF的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com