【題目】如圖,已知AB∥CD,分別探究下面三個圖形中∠P和∠A,∠C的關(guān)系,請你從所得三個關(guān)系中任意選出一個,說明你探究結(jié)論的正確性.
結(jié)論:(1)___________________;
(2)____________________;
(3)_____________________;
(4)選擇結(jié)論____________,說明理由.
【答案】(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PCD=∠APC+∠PAB;(4)∠APC+∠PAB+∠PCD=360°,理由見解析.
【解析】
(1)過點P作PE∥AB,則AB∥PE∥CD,再根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)即可解答;
(2)過點P作PF∥AB,則AB∥CD∥PF,再根據(jù)兩直線平行,內(nèi)錯角相等即可解答;
(3)根據(jù)AB∥CD,可得出∠1=∠PCD,再根據(jù)三角形外角的性質(zhì)進(jìn)行解答;
(4)選擇以上結(jié)論任意一個進(jìn)行證明即可.
解:(1)過點P作PE∥AB,則AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°.
故答案為:∠APC+∠PAB+∠PCD=360°;
(2)過點P作直線PF∥AB,
∵AB∥CD,
∴AB∥PF∥CD,
∴∠PAB=∠1,∠PCD=∠2,
∴∠APC=∠PAB+∠PCD.
故答案為:∠APC=∠PAB+∠PCD;
(3)∵AB∥CD,
∴∠1=∠C,
∵∠1=∠PAB+∠APC,
∴∠PCD=∠APC+∠PAB.
故答案為:∠PCD=∠APC+∠PAB.
(4)選擇結(jié)論∠APC+∠PAB+∠PCD=360°
理由:過點P作PE∥AB,則AB∥PE∥CD,
∴∠1+∠PAB=180°,
∠2+∠PCD=180°,
∴∠APC+∠PAB+∠PCD=360°
故答案為:∠APC+∠PAB+∠PCD=360°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形中,點從點出發(fā),沿運(yùn)動,同時,點從點出發(fā),沿運(yùn)動,當(dāng)點到達(dá)點時,點恰好到達(dá)點,已知點每秒比點每秒多運(yùn)動當(dāng)其中一點到達(dá)時,另一點停止運(yùn)動.
求兩點的運(yùn)動速度;
當(dāng)其中一點到達(dá)點時,另一點距離點 (直接寫答案);
設(shè)點的運(yùn)動時間為秒,請用含的代數(shù)式表示的面積,并寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°
(1) 求證:四邊形ABCD是矩形
(2) 若DE⊥AC交BC于E,∠ADB∶∠CDB=2∶3,則∠BDE的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市推出電腦上網(wǎng)包月制,每月收取費(fèi)用y(元)與上網(wǎng)時間x(小時)的函數(shù)關(guān)系如圖所示,其中BA是線段,且BA∥x軸,AC是射線.
(1)當(dāng)x≥30,求y與x之間的函數(shù)關(guān)系式;
(2)若小李4月份上網(wǎng)20小時,他應(yīng)付多少元的上網(wǎng)費(fèi)用?
(3)若小李5月份上網(wǎng)費(fèi)用為75元,則他在該月份的上網(wǎng)時間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知OB,OC是∠AOD內(nèi)部的兩條射線,OM平分∠AOB,ON平分∠COD.
(1)若∠BOC=25°,∠MOB=15°,∠NOD=10°,求∠AOD的大;
(2)若∠AOD=75°,∠MON=55°,求∠BOC的大;
(3)若∠AOD=α,∠MON=β,求∠BOC的大小(用含α,β的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=10cm,在直線AB上取一點C,使AC=16cm,則線段AB的中點與AC的中點的距離為( )
A.13cm或26cmB.6cm或13cmC.6cm或25cmD.3cm或13cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠ACD=90°,AC=DC,MN是過點A的直線,過點D作DB⊥MN于點B,連接CB.
(1)問題發(fā)現(xiàn)
如圖(1),過點C作CE⊥CB,與MN交于點E,則易發(fā)現(xiàn)BD和EA之間的數(shù)量關(guān)系為 , BD、AB、CB之間的數(shù)量關(guān)系為 .
(2)拓展探究
當(dāng)MN繞點A旋轉(zhuǎn)到如圖(2)位置時,BD、AB、CB之間滿足怎樣的數(shù)量關(guān)系?請寫出你的猜想,并給予證明.
(3)解決問題
當(dāng)MN繞點A旋轉(zhuǎn)到如圖(3)位置時(點C、D在直線MN兩側(cè)),若此時∠BCD=30°,BD=2時,CB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的周長為64,E、F、G分別為AB、AC、BC的中點,A′、B′、C′ 分別為EF、EG、GF的中點,如果△ABC、△EFG、△A′B′C′分別為第1個、第2個、第3個三角形,按照上述方法繼續(xù)作三角形,那么第n個三角形的周長是__________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com