【題目】如圖,,點(diǎn)D在邊BCB、C不重合,四邊形ADEF為正方形,過點(diǎn)F,交CA的延長(zhǎng)線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:;:2;;

其中正確的結(jié)論的個(gè)數(shù)是

A. 0 B. 1 C. 2 D. 3

【答案】D

【解析】分析:由正方形的性質(zhì)得出 ,證出,由AAS證明,得出①正確;
證明四邊形CBFG是矩形,得出 ②正確;
由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出③正確;

詳解:∵四邊形ADEF為正方形,

FGCA,

∴∠CAD=AFG,

FGAACD,

FGAACD(AAS),

AC=FG,①正確;

BC=AC,

FG=BC,

,FGCA,

FGBC

∴四邊形CBFG是矩形,

②正確;

③正確;

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) y=(a為常數(shù))的圖象上有三點(diǎn)(﹣4,y1),(﹣1,y2),(2,y3),則函數(shù)值y1 , y2 , y3的大小關(guān)系是( 。
A.y3<y1<y2
B.y3<y2<y1
C.y1<y2<y3
D.y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,則下面的結(jié)論:
①△ODC是等邊三角形;②BC=2AB;③∠AOE=135°;④SAOE=SCOE ,
其中正確結(jié)論有( 。

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的集合內(nèi):

100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,,﹣,2.010010001…,

正分?jǐn)?shù)集合:{    …}

整數(shù)集合:{   …}

負(fù)有理數(shù)集合:{    …}

非正整數(shù)集合;{   …}

無理數(shù)集合:{    …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形紙片ABCD中,對(duì)角線AC、BD交于點(diǎn)O,折疊正方形紙片ABCD,使AD落在BD上,點(diǎn)A恰好與BD上的點(diǎn)F重合.展開后,折痕DE分別交AB、AC于點(diǎn)E、G.連接GF.下列結(jié)論:①∠AGD=112.5°;AD:AE=2;SAGD=SOGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結(jié)論的序號(hào)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,EBD延長(zhǎng)線上的點(diǎn),且ACE是等邊三角形.

(1)求證:四邊形ABCD是菱形(2)若∠AED=2EAD,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.

(1)ODOE的位置關(guān)系是______;(2)EOC的余角是_______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,你能求出CD的長(zhǎng)嗎?若能,請(qǐng)給出求解過程.

查看答案和解析>>

同步練習(xí)冊(cè)答案