精英家教網(wǎng)如圖所示,已知∠A為銳角,sinA=
817
,求cosA,tanA的值.
分析:利用三角函數(shù)的定義及勾股定理求解.
解答:解:在Rt△ABC中,∠C=90°,
∵sinA=
BC
AB
=
8
17
,
故設(shè)BC=8k,AB=17k,由勾股定理,得:
AC=
AB2-BC2
=
(17k)2-(8k)2
=15k,
∴cosA=
AC
AB
=
15k
17k
=
15
17
.tanA=
BC
AC
=
8k
15k
=
8
15
點(diǎn)評(píng):求銳角的三角函數(shù)值的方法:利用銳角三角函數(shù)的定義,通過(guò)設(shè)參數(shù)的方法求三角函數(shù)值,或者利用同角(或余角)的三角函數(shù)關(guān)系式求三角函數(shù)值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知D為邊AC的中點(diǎn),CE垂直于BD的延長(zhǎng)線(xiàn)于點(diǎn)E,CE=2cm,S△ABC=8cm2,則線(xiàn)段BD的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知AE為⊙O的直徑,AD為△ABC的BC邊上的高.
(1)求證:∠BAE=∠DAC;
(2)若AB=10,AD=6,CD=2
3
,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知AB為⊙O的直徑,點(diǎn)P為OA上一點(diǎn),弦MN過(guò)點(diǎn)P,且AP=2,OP=3,MP=2
2
,若OQ⊥MN于點(diǎn)Q,求OQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一圓柱形器皿在點(diǎn)光源P下的投影如圖所示,已知AD為該器皿底面圓的直徑,且AD=3,CD為該器皿的高,CD=4,CP′=1,點(diǎn)D在點(diǎn)P下的投影剛好位于器皿底與器皿壁的交界處,即點(diǎn)B處,點(diǎn)A在點(diǎn)P下的投影為A′,求點(diǎn)A′到CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)軸上表示a,0,1,b四個(gè)數(shù)的點(diǎn)如圖所示,已知O為AB的中點(diǎn),求a+b+
ab
+a+1的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案