如圖,線段與⊙O相切于點(diǎn),連結(jié)、交⊙O于點(diǎn)D,已知OA=OB=6cm,AB=cm.
求:(1)⊙O的半徑;
(2)圖中陰影部分的面積.
(1)3;(2)-

試題分析:(1)線段AB與⊙O相切于點(diǎn)C,則可以連接OC,得到OC⊥AB,則OC是等腰三角形OAB底邊上的高線,根據(jù)三線合一定理,得到AC=3,在直角△OAC中根據(jù)勾股定理得到半徑OC的長;
(2)圖中陰影部分的面積等于△OAB的面積與扇形OCD的面積的差的一半.
(1)連接OC,則OC⊥AB.
∵OA=OB,
∴AC=BC=AB=×6=3
在Rt△AOC中,OC=,
∴⊙O的半徑為3.
(2)∵OC=OB,
∴∠B=30°,∠COD=60°
∴扇形OCD的面積為S扇形OCD=,
∴陰影部分的面積為S陰影=SRtOBC-S扇形OCD=OC•CB-=-
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在等腰梯形ABCD中,AD∥BC.O是CD邊的中點(diǎn),以O(shè)為圓心,OC長為半徑作圓,交BC邊于點(diǎn)E.過E作EH⊥AB,垂足為H.已知⊙O與AB邊相切,切點(diǎn)為F.
(1)求證:OE∥AB;
(2)求證:;
(3)若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在□ABCD中,過A、B、D三點(diǎn)的⊙O交BC于點(diǎn)E,連接DE,∠CDE=∠DAE.
(1)判斷四邊形ABED的形狀,并說明理由;
(2)判斷直線DC與⊙O的位置關(guān)系,并說明理由;
(3)若AB=3,AE=6,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB為⊙O的直徑,E是AB延長線上一點(diǎn),點(diǎn)C是⊙O上的一點(diǎn),連結(jié)EC、BC、AC,且∠BCE=∠BAC.
(1)求證:EC是⊙O的切線.
(2)過點(diǎn)A作AD垂直于直線EC于D,若AD=3,DE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的 ⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作⊙O的切線,交AC的延長線于點(diǎn)F.

⑴求證:BE=CE;
⑵求∠CBF的度數(shù);
⑶若AB=6,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(2,0),⊙A的半徑是2,⊙P的半徑是1,滿足與⊙A及y軸都相切的⊙P有      個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,、分別切⊙于點(diǎn),點(diǎn)是⊙上一點(diǎn),且,則       度;若PA=4,則AO=       

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

兩圓的半徑分別為3和7,圓心距為4,則兩圓的位置關(guān)系是( )
A.內(nèi)切B.相交C.外切D.外離

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在Rt△ABC中,∠ABC = 90, AB =" 8cm" , BC =" 6cm" , 分別以A,C為圓心,以的長為半徑作圓, 將 Rt△ABC截去兩個(gè)扇形,則剩余(陰影)部分的面積為       cm(結(jié)果保留π)

查看答案和解析>>

同步練習(xí)冊答案