精英家教網 > 初中數學 > 題目詳情
(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

【答案】分析:(1)把點A(-1,0),B(0,-3),C(3,0 )三點的坐標代入函數解析式,利用待定系數法求解;
(2)求出拋物線的頂點坐標,根據正弦函數的定義求解.
解答:解:(1)由已知得解得
所以,拋物線的解析式為y=x2-2x-3.

(2)過D作DE⊥y軸于點E.
拋物線的解析式為y=x2-2x-3=(x-1)2-4,
則物線的頂點坐標為(1,-4),則OE=4,DE=1.
在直角△ODE中,根據勾股定理即可得到:OD===
則sin∠BOD==
點評:主要考查了二次函數的解析式的求法和與幾何圖形結合的綜合能力的培養(yǎng).要會利用數形結合的思想把代數和幾何圖形結合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關系.
練習冊系列答案
相關習題

科目:初中數學 來源:2004年全國中考數學試題匯編《銳角三角函數》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《二次函數》(03)(解析版) 題型:解答題

(2004•本溪)已知,如圖,拋物線y=ax2+bx+c經過點A(-1,0),B(0,-3),C(3,0 )三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,求sin∠BOD的值.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《圓》(08)(解析版) 題型:填空題

(2004•本溪)已知,兩圓半徑分別為4cm和2cm,圓心距為10cm,則兩圓的內公切線的長為    cm.

查看答案和解析>>

科目:初中數學 來源:2004年全國中考數學試題匯編《圓》(07)(解析版) 題型:填空題

(2004•本溪)已知圓O的直徑為6cm,如果直線l上的一點C到圓心O的距離為3cm,則直線l與圓O的位置關系是   

查看答案和解析>>

同步練習冊答案