【題目】如圖,CA⊥AB,DB⊥AB,已知AC=2,AB=6,點(diǎn)P射線BD上一動點(diǎn),以CP為直徑作⊙O,點(diǎn)P運(yùn)動時(shí),若⊙O與線段AB有公共點(diǎn),則BP最大值為 .
【答案】
【解析】解:當(dāng)AB與⊙O相切時(shí),PB的值最大,
如圖,設(shè)AB與⊙O相切于E,連接OE,則OE⊥AB,
過點(diǎn)C作CF⊥PB于F,
∵CA⊥AB,DB⊥AB,
∴AC∥OE∥PB,
四邊形ABPC是矩形,
∴CF=AB=6,
∵CO=OP,
∴AE=BE,
設(shè)PB=x,則PC=2OE=2+x,PF=x﹣2,
∴(x+2)2=(x﹣2)2+62 ,
解得;x= ,
∴BP最大值為: ,
所以答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與圓的三種位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握直線與圓有三種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)-4-1-(-2)0+3÷;
(2)(π-3)0+()-2+4×2-1;
(3)()-1+(π-2018)0-(-1)2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AB=5,AC=3,D點(diǎn)從BC的中點(diǎn)到C點(diǎn)運(yùn)動,點(diǎn)E在AD上,以E為圓心的⊙E分別與AB、BC相切,則⊙E的半徑R的取值范圍為( 。
A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE=CF,AB∥DE,添加下列哪個(gè)條件不能證明△ABC≌△DEF的是( )
A. AB=DE B. ∠A=D C. AC=DF D. AC∥DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)作圖:在△BED中作出BD邊上的高EF;BE邊上的高DG;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高EF為多少?若BE=6,求△BED中BE邊上的高DG為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任何一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時(shí)就有.給出下列關(guān)于F(n)的說法:(1);(2);(3)F(27)=3;(4)若n是一個(gè)整數(shù)的平方,則F(n)=1.其中正確說法的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用表示不大于的最大整數(shù),例如:,,;用表示大于的最小整數(shù),例如:,,.解決下列問題:
(1)= ,,= ;
(2)若=2,則的取值范圍是 ;若=-1,則的取值范圍是 ;
(3)已知,滿足方程組,求,的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com