【題目】如圖,是工人師傅用同一種材料制成的金屬框架,已知,,,其中的周長為24cm,,則制成整個(gè)金屬框架所需這種材料的總長度為( )

A. 45cm B. 48cm C. 51cm D. 54cm

【答案】A

【解析】

根據(jù)BF=EC以及邊與邊的關(guān)系即可得出BC=EF,再結(jié)合∠B=E、AB=DE即可證出ABC≌△DEF(SAS),進(jìn)而得出CDEF=CABC=24cm,結(jié)合圖形以及CF=3cm即可得出制成整個(gè)金屬框架所需這種材料的總長度.

BF=EC,BC=BF+FC,EF=EC+CF,

BC=EF.

ABCDEF中,

,

∴△ABC≌△DEF(SAS),

CDEF=CABC=24cm.

CF=3cm,

∴制成整個(gè)金屬框架所需這種材料的總長度為CDEF+CABC-CF=24+24-3=45cm.

故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次演講比賽中,評委將從演講內(nèi)容、演講能力、演講效果三方面為選手打分,各項(xiàng)成績均按百分制,進(jìn)入決賽的兩名選手的單項(xiàng)成績?nèi)缦卤硭荆?/span>

選手

演講內(nèi)容

演講能力

演講效果

85

95

95

95

85

95

(1)如果認(rèn)為這三方面的成績同等重要,從他們的成績看,誰能勝出?

(2)如果按演講內(nèi)容占50%,演講能力占40%,演講效果占10%的比例計(jì)算甲、乙的平均成績,那么誰將勝出?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E、F、G、H分別在邊AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.
(1)求證:△AEH≌△CGF;
(2)求證:四邊形EFGH是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD內(nèi)接于⊙O,E是 的中點(diǎn),連接BE、CE,則∠ABE=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臉譜是中國戲曲男演員臉部的彩色化妝.這種臉部化妝主要用于凈(花臉)和丑(小丑),表現(xiàn)人物的性格和特征.現(xiàn)有四張臉譜,如圖所示:有兩張相同的表現(xiàn)忠勇俠義的凈角姜維,有一張表現(xiàn)直爽剛毅的凈角包拯,有一張表現(xiàn)陰險(xiǎn)奸詐的丑角夏侯嬰.
(1)隨機(jī)抽取一張,獲得一張凈角臉譜的概率是;
(2)隨機(jī)抽取兩張,求獲得一張姜維臉譜和一張包拯臉譜的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組對邊平行,另一組對邊相等且不平行的四邊形叫做等腰梯形.
(1)類比研究
我們在學(xué)完平行四邊形后,知道可以從對稱性、邊、角和對角線四個(gè)角度對四邊形進(jìn)行研究,完成表.

四邊形

對稱性

對角線

平行
四邊形

兩組對邊分別平行,兩組對邊分別相等.

兩組對角
分別相等.

對角線互相平分.

等腰
梯形

軸對稱圖形,過平行的一組對邊中點(diǎn)的直線是它的對稱軸.

一組對邊平行,另一組對邊相等.


(2)演繹論證
證明等腰梯形有關(guān)角和對角線的性質(zhì).
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是對角線.
求證:
證明:
揭示關(guān)系
我們可以用圖來揭示三角形和一些特殊三角形之間的關(guān)系.

(3)請用類似的方法揭示四邊形、對角線相等的四邊形、平行四邊形、矩形以及等腰梯形之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊AB,BC上,AF=DE,AF和DE相交于點(diǎn)G

1觀察圖形,寫出圖中所有與AED相等的角

2選擇圖中與AED相等的任意一個(gè)角,并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知邊長為m的正方形面積為12,則下列關(guān)于m的說法中,錯(cuò)誤的是( ) ①m是無理數(shù);
②m是方程m2﹣12=0的解;
③m滿足不等式組 ;
④m是12的算術(shù)平方根.
A.①②
B.①③
C.③
D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系中,O 是坐標(biāo)原點(diǎn),長方形 OACB 的頂點(diǎn) A,B 分別在 x,y 軸上,已知 OA=3, 點(diǎn) D y 軸上一點(diǎn),其坐標(biāo)為(0,1),CD=5,點(diǎn) P 從點(diǎn) A 出發(fā)以每秒 1 個(gè)單位的速度沿線段 A﹣C﹣B 的方向運(yùn)動,當(dāng)點(diǎn) P 與點(diǎn) B 重合時(shí)停止運(yùn)動,運(yùn)動時(shí)間為 t

(1) B,C 兩點(diǎn)坐標(biāo);

(2)①求OPD 的面積 S 關(guān)于 t 的函數(shù)關(guān)系式;

當(dāng)點(diǎn) D 關(guān)于 OP 的對稱點(diǎn) E 落在 x 軸上時(shí),求點(diǎn) E 的坐標(biāo);

(3)在(2)②情況下,直線 OP 上求一點(diǎn) F,使 FE+FA 最。

查看答案和解析>>

同步練習(xí)冊答案