如圖,已知直角坐標(biāo)系內(nèi)有一條直線(xiàn)和一條曲線(xiàn),這條直線(xiàn)和x軸、y軸分別交于點(diǎn)A和點(diǎn)B,且OA=OB=1,這條曲線(xiàn)是函數(shù)y=
1
2x
的圖象在第一限內(nèi)的一個(gè)分支,點(diǎn)P是這條曲線(xiàn)的任意一點(diǎn),它的坐標(biāo)是(a,b),由點(diǎn)P向x軸、y軸所作的垂線(xiàn)PM、PN(點(diǎn)M、N為垂足)分別與直線(xiàn)AB相交于點(diǎn)E和F.
(1)求△OEF的面積(a,b的代數(shù)式表示);
(2)△AOF與△BOE是否一定相似?如果一定相似,請(qǐng)證明;如果不一定相似,請(qǐng)說(shuō)明理由;
(3)當(dāng)點(diǎn)P在曲線(xiàn)上移動(dòng)時(shí),△OEF隨之變動(dòng),指出在△OEF的三個(gè)內(nèi)角中,是否有大小始終保持不變的角?若有,請(qǐng)求出其大;若沒(méi)有,請(qǐng)說(shuō)明理由.
(1)根據(jù)題意,易知:直線(xiàn)AB的解析式為y=-x+1,
點(diǎn)E的坐標(biāo)是(a,1-a),點(diǎn)F的坐標(biāo)是(1-b,b),
當(dāng)PM、PN與線(xiàn)段AB都相交時(shí),如圖1,
∴S△EOF=S△AOB-S△AOE-S△BOF
=
1
2
×1×1-
1
2
×1×(1-a)-
1
2
×1×(1-b)

=
a+b-1
2

當(dāng)PM、PN中有一條與AB相交,另一條與BA延長(zhǎng)線(xiàn)或AB延長(zhǎng)線(xiàn)相交時(shí),如圖2和圖3,
∴S△EOF=S△FOA+S△AOE=
1
2
×1×b+
1
2
×1×(a-1)=
a+b-1
2
,
∴S△EOF=S△FOB+S△BOE=
1
2
×1×(b-1)+
1
2
×1×a=
a+b-1
2
,
即S△EOF=
a+b-1
2
;

(2)△AOF和△BEO一定相似.
∵如圖1,OA=OB=1,
∴∠OAF=∠EBO,
∴BE=BA-AE=
2
-
(1-a)2+(1-a)2
=
2
a
,
AF=BA-BF=
2
-
(1-b)2+(1-b)2
=
2
b
,
∵點(diǎn)P是函數(shù)y=
1
2x
圖象上任意一點(diǎn),
b=
1
2a
,即2ab=1,
2
2
b=1即,AF•BE=OB•OA,
AF
OB
=
OA
BE
,
∴△AOF△BEO,
∵對(duì)圖2,圖3同理可證,
∴△AOF△BEO;

(3)當(dāng)點(diǎn)P在曲線(xiàn)上移動(dòng)時(shí),在△OEF中,∠EOF一定等于45°,
由(2)知,△AOF△BEO,
∴∠AFO=∠BOE,
如圖1,在△BOF中,∠AFO=∠BOF+∠B,
而∠BOE=∠BOF+∠EOF,
∴∠EOF=∠B=45°,
對(duì)圖2,圖3同理可證,
∴∠EOF=45°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

點(diǎn)P是x軸正半軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn)PA交雙曲線(xiàn)y=
1
x
于點(diǎn)A,連接OA并延長(zhǎng),與雙曲線(xiàn)y=
1
x
交于點(diǎn)F,F(xiàn)H垂直于x軸,垂足為點(diǎn)H,連接AH、PF.

(1)如圖①,當(dāng)點(diǎn)A的橫坐標(biāo)為
3
2
時(shí),求四邊形APFH的面積.
(2)如圖②,當(dāng)點(diǎn)P在x軸的正方向上運(yùn)動(dòng)到點(diǎn)D,過(guò)點(diǎn)D作x軸的垂線(xiàn)交雙曲線(xiàn)于點(diǎn)B,連接BO并延長(zhǎng),與雙曲線(xiàn)y=
1
x
交于點(diǎn)F,F(xiàn)H垂直于x軸,垂足為點(diǎn)H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線(xiàn)的解析式為y=
k
x
,四邊形BDFH的面積為_(kāi)_____.(直接寫(xiě)出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,點(diǎn)A是雙曲線(xiàn)y=-
1
x
在第二象限的分支上的任意一點(diǎn),點(diǎn)B、C、D分別是點(diǎn)A關(guān)于x軸、原點(diǎn)、y軸的對(duì)稱(chēng)點(diǎn),則四邊形ABCD的面積是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

反比例函數(shù)y=-
6
x
與直線(xiàn)y=-x+2的圖象交于A、B兩點(diǎn),點(diǎn)A、B分別在第四、二象限,
求:(1)A、B兩點(diǎn)的坐標(biāo);
(2)△ABO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直角梯形OABC中,BCOA,∠OAB=90°,OA=4,腰AB上有一點(diǎn)D,AD=2,四邊形ODBC的面積為6,建立如圖所示的直坐標(biāo)系,反比例函數(shù)y=
m
x
(x>0)的圖象恰好經(jīng)過(guò)點(diǎn)C和點(diǎn)D,則CB與BD的比值是( 。
A.1B.
4
3
C.
6
5
D.
8
7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的直徑AB=12cm,AM和BN是它的兩條切線(xiàn),DE切⊙O于E,交AM于D,BN于C,設(shè)AD=x,BC=y,求y與x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某運(yùn)輸公司準(zhǔn)備運(yùn)輸一批貨物,需要的貨船數(shù)量y(艘)與貨船的核定裝載量x(噸)之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖象提供的信息回答問(wèn)題:
(1)這批貨物的質(zhì)量是多少?lài)崳?br>(2)寫(xiě)出y與x的函數(shù)關(guān)系式.
(3)如果要求出動(dòng)貨船不超過(guò)4艘,那么每艘貨船的核定裝載量至少要多少?lài)崳?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正方形OAPB、等腰直角三角形ADF的頂點(diǎn)A,D,B在坐標(biāo)軸上,點(diǎn)P,F(xiàn)在函數(shù)y=
9
x
(x>0)
的圖象上,則點(diǎn)F的坐標(biāo)為(  )
A.(
3
5
-3
2
,
3
5
+3
2
)
B.(
8+2
7
2
8-2
7
2
)
C.(
3
5
+3
2
,
3
5
-3
2
)
D.(
8-2
7
2
8+2
7
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知矩形的面積為20,則它的長(zhǎng)y與寬x之間的關(guān)系用圖象表示大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案