【題目】如圖,拋物線y=﹣1.25x2+4.25x+1與y軸交于A點,過點A的直線與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0)

(1)求直線AB的函數(shù)關(guān)系式;
(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N.設(shè)點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當(dāng)t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

【答案】
(1)解:∵當(dāng)x=0時,y=1,∴A(0,1).

當(dāng)x=3時,y=﹣ ×32+ ×3+1=2.5,∴B(3,2.5),

設(shè)直線AB的解析式為y=kx+b,

則: ,解得: ,

∴直線AB的解析式為y= x+1


(2)解:∵動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,點P移動的時間為t秒,

∴OP=1t=t,

∴P(t,0)(0≤t≤3),

∵過點P作PN⊥x軸,交直線AB于點M,交拋物線于點N,

∴M(t, t+1),N(t,﹣ t2+ t+1),

∴s=MN=NP﹣MP=﹣ t2+ t+1﹣( t+1)=﹣ t2+ t(0≤t≤3)


(3)解:由題意,可知當(dāng)MN=BC時,四邊形BCMN為平行四邊形,

此時,有﹣ t2+ t= ,

解得t1=1,t2=2,

所以當(dāng)t=1或2時,四邊形BCMN為平行四邊形.

①當(dāng)t=1時,MP= ,NP=4,故MN=NP﹣MP= ,

又在Rt△MPC中,MC= = ,故MN=MC,此時四邊形BCMN為菱形;

②當(dāng)t=2時,MP=2,NP= ,故MN=NP﹣MP= ,

又在Rt△MPC中,MC= = ,故MN≠MC,此時四邊形BCMN不是菱形.


【解析】(1)將x=0、3分別代入函數(shù)解析式,求出對應(yīng)的函數(shù)值,得到點A、B的坐標(biāo),利用待定系數(shù)法就可求出直線AB的解析式。
(2)根據(jù)題意得到OP=t,可得到點P的坐標(biāo),由PN⊥x軸,交直線AB于點M,交拋物線于點N,可得到點M、N的坐標(biāo),由s=MN=NP﹣MP,可求得s與t的函數(shù)解析式及t的取值范圍。
(3)由題意知MN∥BC,因此當(dāng)MN=BC時,四邊形BCMN為平行四邊形,建立方程,求解即可求得t的值;當(dāng)t=1時,在Rt△MPC中,求出MC的長即可;②當(dāng)t=2時,在Rt△MPC中求出MC即可判斷平行四邊形BCMN是否菱形。
【考點精析】通過靈活運用確定一次函數(shù)的表達(dá)式和拋物線與坐標(biāo)軸的交點,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為開展陽光體育活動,計劃拿出不超過3000元的資金購買一批籃球,羽毛球拍和乒乓球拍,已知籃球,羽毛球拍和乒乓球拍的單價比為8:32,且其單價和為130元,

1)請問籃球,羽毛球拍和乒乓球拍的單價分別是多少元?

2)若要求購買籃球,羽毛球拍和乒乓球拍的總數(shù)量是80個(副),羽毛球拍的數(shù)量是乒乓球拍數(shù)量的4倍,且購買乒乓球拍的數(shù)量不超過15副請問有幾種購買方案?哪種方案,才能使運費最少?最少運費是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是x軸上的一個動點,當(dāng)△DCM的周長最小時,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,將拋物線y=x2+2x+3繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是(
A.y=﹣(x+1)2+2
B.y=﹣(x﹣1)2+4
C.y=﹣(x﹣1)2+2
D.y=﹣(x+1)2+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在七年級設(shè)立了六個課外興趣小組,每個參加者只能參加一個興趣小組,如圖是六個興趣小組不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖. 根據(jù)圖中信息,可得下列結(jié)論不正確的是( )

A.七年級共有320人參加了興趣小組
B.體育興趣小組對應(yīng)扇形圓心角的度數(shù)為96°
C.美術(shù)興趣小組對應(yīng)扇形圓心角的度數(shù)為72°
D.各小組人數(shù)組成的數(shù)據(jù)中位數(shù)是56.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明周日在廣場放風(fēng)箏,如圖,小明為了計算風(fēng)箏離地面的高度,他測得風(fēng)箏的仰角為60°,已知風(fēng)箏線BC的長為20米,小明的身高AB為1.75米,請你幫小明計算出風(fēng)箏離地面的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù) ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC、BD交于點O,經(jīng)過點O的直線交ABE,交CDF.

1)求證:OE=OF

2)連結(jié)DE、BF,試說明四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為12的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向向右平移,得到△A′B′C′,當(dāng)兩個三角形重疊部分的面積為32時,它移動的距離AA′等于

查看答案和解析>>

同步練習(xí)冊答案