如圖所示,在△ABC和△DBC中,∠ACB=∠DBC=90°,點E是BC的中點,EF⊥AB,垂足為F,且AB=DE.
(1)求證:△BCD是等腰直角三角形;
(2)若BD=8厘米,求AC的長.

【答案】分析:(1)要證△BCD是等腰直角三角形,只需證BC=DB,由已知BD⊥BC,EF⊥AB,可證∠2=∠3,由已知AC⊥BC,DB⊥BC,可證AC∥BD,得∠A=∠2,即可證得∠A=∠3,又已知∠ACB=∠EBD=90°,AB=DE,符合三角形全等的判定定理AAS,即可證得△ACB≌△EBD,所以BC=DB,即證△BCD是等腰直角三角形.
(2)由(1)知△ACB≌△EBD,得到AC=EB,又因為BD=8cm,即BC=8cm.又因為E是BC中點,故BE=4,即可求AC=4cm.
解答:(1)證明:如圖所示,
∵BD⊥BC,EF⊥AB,
∴∠1+∠2=90°,∠1+∠3=90°,
∴∠2=∠3.
∵AC⊥BC,DB⊥BC,
∴AC∥BD.
∴∠A=∠2.
∴∠A=∠3.
∴又∠ACB=∠EBD=90°,AB=DE,
∴△ACB≌△EBD.
∴BC=DB.
∴△BCD是等腰直角三角形.

(2)解:由△ACB≌△EBD,
∴AC=EB,
∵BD=8cm,
∴BC=8cm.
∵E是BC中點,
∴BE=4cm,
∴AC=4(cm).
點評:本題重點考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,無法證明三角形全等,本題是一道較為簡單的題目,找準全等的三角形是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案