【題目】已知關于x的一元二次方程(a+c)x2+2bx+a﹣c=0,其中a、b、c分別為△ABC三邊的長.下列關于這個方程的解和△ABC形狀判斷的結論錯誤的是( 。

A. 如果x=﹣1是方程的根,則△ABC是等腰三角形

B. 如果方程有兩個相等的實數(shù)根,則△ABC是直角三角形

C. 如果△ABC是等邊三角形,方程的解是x=0x=﹣1

D. 如果方程無實數(shù)解,則△ABC是銳角三角形

【答案】D

【解析】試題解析:A. x=1是方程的根,則a+c2b+ac=02a2b=0,得到a=b,ABC是等腰三角形,故正確;

B. 因為方程有兩相等的實數(shù)根,所以 所以△ABC是直角三角形,故正確;

C. 因為a=b=c,所以此方程為 解方程得x=0x=1,所以正確;

D. 因為方程無解,所以△<0, 無法實數(shù)根,三角形是鈍角三角形,故錯誤.

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結論:
①該拋物線的對稱軸在y軸左側;
②關于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(1)992-102×98;

(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.

【答案】(1)-195(2)2xy-2

【解析】試題分析:(1)利用平方差公式,完全平方公式簡便計算.

(2)提取公因式,化簡.

試題解析:

(1)原式=(100-1)2-(100+2)×(100-2)

=(1002-200+1)-(1002-4)=-200+5=-195.

(2)原式=[x2yxy-1)-x2y(1-xy)]÷x2y

=2x2yxy-1)÷x2y=2(xy-1)=2xy-2.

型】解答
束】
21

【題目】1先化簡,再求值:aa-2b+a+b2,其中a=-1,b=;

2)若x2-5x=3,求(x-1)(2x-1-x+12+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A、B兩點,與y軸交于點C(0,3),且此拋物線的頂點坐標為M(﹣1,4).

(1)求此拋物線的解析式;
(2)設點D為已知拋物線對稱軸上的任意一點,當△ACD與△ACB面積相等時,求點D的坐標;
(3)點P在線段AM上,當PC與y軸垂直時,過點P作x軸的垂線,垂足為E,將△PCE沿直線CE翻折,使點P的對應點P′與P、E、C處在同一平面內,請求出點P′坐標,并判斷點P′是否在該拋物線上.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉90°后得到△A1B1C.
(1)畫出△A1B1C,直接寫出點A1、B1的坐標;
(2)求在旋轉過程中,△ABC所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DBAC,且DB=AC,EAC的中點,

1)求證:BC=DE;

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD,E 是直線 CD 上的一點,且 BAE=30°, 是直線 CD 上的一動點,M AP 的中點,直線 MNAP 且與 CD 交于點 N,設 BAP=X°,MNE=Y°.

(1)在圖2 中,當 x=12 時,∠MNE= ;在圖 3 中,當 x=50 時,∠MNE= ;

(2)研究表明:yx之間關系的圖象如圖4所示( 不存在時,用空心點表示),請你根據(jù)圖象直接估計當 y=100 時,x= ;

(3)探究:當 x= 時,點 N 與點 E 重合;

(4)探究:當 x>105 時,求yx之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生物興趣小組在四天的實驗研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同.他們將一頭駱駝前兩晝夜的體溫變化情況繪制成下圖.請根據(jù)圖像回答問題:

(1)第一天中,在什么時間范圍內這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多少時間?

(2)第三天12時這頭駱駝的體溫約是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是圓O的直徑,弦CD⊥AB,∠BCD=30°,CD=4 ,則S陰影=(
A.2π??
B. π??
C. π??
D. π

查看答案和解析>>

同步練習冊答案