【題目】已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:
①該拋物線的對稱軸在y軸左側(cè);
②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;
③a﹣b+c≥0;
的最小值為3.
其中,正確結(jié)論的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個

【答案】D
【解析】解:∵b>a>0
∴﹣ <0,
所以①正確;
∵拋物線與x軸最多有一個交點,
∴b2﹣4ac≤0,
∴關(guān)于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,
所以②正確;
∵a>0及拋物線與x軸最多有一個交點,
∴x取任何值時,y≥0
∴當(dāng)x=﹣1時,a﹣b+c≥0;
所以③正確;
當(dāng)x=﹣2時,4a﹣2b+c≥0
a+b+c≥3b﹣3a
a+b+c≥3(b﹣a)
≥3
所以④正確.
故選:D.
從拋物線與x軸最多一個交點及b>a>0,可以推斷拋物線最小值最小為0,對稱軸在y軸左側(cè),并得到b2﹣4ac≤0,從而得到①②為正確;由x=﹣1及x=﹣2時y都大于或等于零可以得到③④正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O為等邊三角形ABC內(nèi)一點,連接OA,OB,OC,以O(shè)B為一邊作∠OBM=60°,且BO=BM,連接CM,OM.

(1)判斷AO與CM的大小關(guān)系并證明;

(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市出租車計費方法如圖所示,xkm)表示行駛里程,y(元)表示車費,請根據(jù)圖象回答下面的問題:

1)出租車的起步價是多少元?當(dāng)x3時,求y關(guān)于x的函數(shù)關(guān)系式.

2)若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx與雙曲線y (k0)交于A、B兩點,且點A的橫坐標(biāo)為4.

(1)k的值;

(2)若雙曲線y (k0)上一點C的縱坐標(biāo)為8,求AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用數(shù)軸回答:

(1)所有小于4且大于-3的整數(shù)是____________________________________________;

(2)不小于-4的非正整數(shù)有_________________________________________________;

(3)絕對值小于5的整數(shù)有_________________________________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機抽取部分學(xué)生進(jìn)行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.
(1)填空:點A坐標(biāo)為;拋物線的解析式為
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?
(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)部有若干個點,用這些點以及正方形ABCD的頂點A,B,C,D把原正方形分割成一些三角形(互相不重疊):

(1)填寫下表:

(2)原正方形能否被分割成2018個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+a﹣c=0,其中a、b、c分別為△ABC三邊的長.下列關(guān)于這個方程的解和△ABC形狀判斷的結(jié)論錯誤的是( 。

A. 如果x=﹣1是方程的根,則△ABC是等腰三角形

B. 如果方程有兩個相等的實數(shù)根,則△ABC是直角三角形

C. 如果△ABC是等邊三角形,方程的解是x=0x=﹣1

D. 如果方程無實數(shù)解,則△ABC是銳角三角形

查看答案和解析>>

同步練習(xí)冊答案