如圖,AB是⊙O的直徑,點C是⊙O上的一個定點,點P是⌒AB上一個動點,過點C作CQ⊥CP,與PB的延長線交于點Q,若AB=10,AC:BC=3:4,則CQ的最大值是 .
【解析】
試題分析:如果CQ取最大值,那么PC也應(yīng)該取最大值,因此當(dāng)PC是圓O的直徑時,CQ才取最大值.此時PC為10,進(jìn)而可通過相似三角形△PQC和△ABC求出CQ的長.
點P在弧AB上運(yùn)動時,在Rt△ACB和Rt△PCQ中,
∠ACB=∠PCQ=90°,∠CAB=∠CPQ,
∴△ACB∽△PCQ
∴,
∴當(dāng)PC取得最大值時,CQ的值最大,
而當(dāng)PC為圓的直徑時,PC的值最大,最大為10,此時.
考點:圓的綜合題
點評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué)解題思路與方法 題型:047
已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com