【題目】如圖,在正方形中,點是邊上的一動點,點是上一點,且,、相交于點.
(1)求證:;
(2)求的度數(shù)
(3)若,求的值.
【答案】(1)見解析;(2)∠AGD=90°;(3).
【解析】
(1)直接利用正方形的性質(zhì)得到AD=DC,∠ADF=∠DCE,,結(jié)合全等三角形的判定方法得出答案;
(2)根據(jù)∠DAF=∠CDE和余角的性質(zhì)可得∠AGD=90°;
(3)利用全等三角形的判定和性質(zhì)得出△ABH≌△ADG(AAS),即可得出的值.
(1)證明:∵四邊形ABCD是正方形,
∴AD=DC,∠ADF=∠DCE=90°,
在△ADF和△DCE中
;
∴△ADF≌△DCE(SAS);
(2)解:由(1)得△ADF≌△DCE,
∴∠DAF=∠CDE,
∵∠ADG+∠CDE=90°,
∴∠ADG+∠DAF=90°,
∴∠AGD=90°,
(3)過點B作BH⊥AG于H
∵BH⊥AG,
∴∠BHA=90°,
∴∠BHA=∠AGD,
∵四邊形ABCD是正方形,
∴AB=AD=BC,∠BAD=90°,
∵∠ABH+∠BAH=90°,∠DAG+∠BAH=90°,
∴∠ABH=∠DAG,
在△ABH和△ADG中
,
∴△ABH≌△ADG(AAS),
∴AH=DG,
∵BG=BC,BA=BC,
∴BA=BG,
∴AH=AG,
∴DG=AG,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校學生的身高情況,隨機抽取該校男生、女生進行抽樣調(diào)查.
已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計圖表:(A組:x<155;B組:155≤x<160;C組:160≤x<165;D組165≤x<170;E組:x≥170)
根據(jù)圖表提供的信息,回答下列問題:
(1)樣本中,男生的身高眾數(shù)在 組,中位數(shù)在 組.
(2)樣本中,女生的身高在E組的人數(shù)有 人.
(3)已知該校共有男生400人,女生380人,請估計身高在160≤x<170之間的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線過點,直線:與直線交于點B,與x軸交于點C.
(1)求k的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.
① 當b=4時,直接寫出△OBC內(nèi)的整點個數(shù);
②若△OBC內(nèi)的整點個數(shù)恰有4個,結(jié)合圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足.
(1) , , ;
(2)若將數(shù)軸折疊,使得點與點重合,則點與數(shù) 表示的點重合;
(3)點、、開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,求、、的長(用含的式子表示);
(4)在(3)的條件下,的值是否隨著時間的變化而改變?若改變,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是反比例函數(shù)y=(k>0)圖象在第一象限上的一個動點,過P作x軸的垂線,垂足為M,若△POM的面積為2.
(1)求反比例函數(shù)的解析式;
(2)若點B坐標為(0,﹣2),點A為直線y=x與反比例函數(shù)y=(k>0)圖象在第一象限上的交點,連接AB,過A作AC⊥y軸于點C,若△ABC與△POM相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某淘寶商家計劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實際每天的銷售量與計劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 | +4 | -3 | -5 | +14 | -8 | +21 | -6 |
(1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。
(3)該店實行每日計件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:數(shù)學課上,老師給出了如下問題:如圖甲,∠AOB=70°,OC平分∠AOB.
若∠BOD=20°,請你補全圖形,并求∠COD的度數(shù).
以下是小明的解答過程:
解:如圖乙,因為OC平分∠AOB,∠AOB=70°,
所以∠BOC=____∠AOB=________°.
因為∠BOD=20°,
所以∠COD= °.
小靜說:“我覺得這個題有兩種情況,小明考慮的是OD在∠AOB外部的情況,事實上,OD還可能在∠AOB的內(nèi)部” .
完成以下問題:
(1)請你將小明的解答過程補充完整;
(2)根據(jù)小靜的想法,請你在圖甲中畫出另一種情況對應(yīng)的圖形,求出此時∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四點A、B、C、D.
(1)用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形:
①畫直線AB.
②畫射線DC.
③延長線段DA至點E,使.(保留作圖痕跡)
④畫一點P,使點P既在直線AB上,又在線段CE上.
(2)在(1)中所畫圖形中,若cm,cm,點F為線段DE的中點,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com