【題目】如圖,已知正方形ABCD的邊長為3,以點A為圓心,1為半徑作圓,E是⊙A上的任意一點,將DE繞點D按逆時針旋轉90°,得到DF,連接AF,則AF的最小值是(

A.

B.

C.

D.

【答案】A

【解析】

根據(jù)題意先證明ADE≌△CDF,則CF=AE=1,根據(jù)三角形三邊關系得:AFAC-CF,即AFAC-1,可知:當FAC上時,AF最小,所以由勾股定理可得AC的長,可求得AF的最小值.

如圖1,連接FC,AF,

EDDF,

∴∠EDF=EDA+ADF=90°,

∵四邊形ABCD是正方形,

AD=CD,∠ADC=90°

∴∠ADF+CDF=90°,

∴∠EDA=CDF,

ADECDF中,

,

∴△ADE≌△CDF

CF=AE=1,

AFAC-CF,即AFAC-1,

∴當FAC上時,AF最小,如圖2,

∵正方形ABCD的邊長為3,

AC=3,

AF的最小值是3-1;

故選A

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某網(wǎng)店專門銷售某種品牌的學習用品,成本為30/件,每天銷售y(件)與銷售單價x(元)之間存在一次函數(shù)關系,如圖所示.

(1) yx之間的函數(shù)關系式;

(2) 當銷售單價x為多少元時,每天獲取的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口的直徑 EF 長為10cm,母線OE(OF)長為10cm,在母線OF 上的點A 處有一塊爆米花殘渣且FA2cm,一只螞蟻從杯口的點E 處沿圓錐表面爬行到A ,則此螞蟻爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD米,點A、D、E在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學興趣小組以問卷調查的形式,隨機調查了某市部分出行市民的主要出行方式(參與問卷調查的市民都只從以下五個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

出行方式

共享單車

步行

公交車

的士

私家車

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調查的市民共有 人,其中選擇B類的人數(shù)有 人;

(2)在扇形統(tǒng)計圖中,求A類對應扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖;

(3)該市約有12萬人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請估計該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生最喜愛的運動項目的情況,隨機抽取了部分學生進行問卷調查,規(guī)定每人從籃球、羽毛球、自行車游泳其他五個選項中必須選擇且只能選擇一個,并將調查結果繪制成如下兩幅不完整的統(tǒng)計圖表.

根據(jù)以上信息,請回答下列問題:

1)這次調查的樣本容量是 ,a+b=

2)扇形統(tǒng)計圖中自行車對應的扇形的圓心角為

3)若該校有1200名學生,估計該校最喜愛的省運會項目是籃球的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將分別標有數(shù)字1,6,8的三張卡片(卡片除所標注數(shù)字外其他均相同)洗勻后,背面朝上放在桌面上.

1)隨機抽取一張卡片,抽到的卡片所標數(shù)字是偶數(shù)的概率為   ;

2)隨機抽取一張卡片,將卡片上標有的數(shù)字作為十位上的數(shù)字(不放回),再隨機抽取一張卡片,將卡片上標有的數(shù)字作為個位上的數(shù)字,用列表或畫樹狀圖的方法求組成的兩位數(shù)恰好是“68”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】程大位是我國明朝商人,珠算發(fā)明家.他60歲時完成的《直指算法統(tǒng)宗》是東方古代數(shù)學名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法.書中有如下問題:

一百饅頭一百僧,大僧三個更無爭,

小僧三人分一個,大小和尚得幾。

意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,下列求解結果正確的是( 。

A. 大和尚25人,小和尚75 B. 大和尚75人,小和尚25

C. 大和尚50人,小和尚50 D. 大、小和尚各100

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】深圳某學校為構建書香校園,擬購進甲、乙兩種規(guī)格的書柜放置新購置的圖書.已知每個甲種書柜的進價比每個乙種書柜的進價高20%,用3600元購進的甲種書柜的數(shù)量比用4200元購進的乙種書柜的數(shù)量少4臺.

1)求甲、乙兩種書柜的進價;

2)若該校擬購進這兩種規(guī)格的書柜共60個,其中乙種書柜的數(shù)量不大于甲種書柜數(shù)量的2倍.請您幫該校設計一種購買方案,使得花費最少.

查看答案和解析>>

同步練習冊答案