【題目】如圖,ABC是等邊三角形,點D是線段AC上的一動點,E在BC的延長線上,且BD=DE.
(1)如圖,若點D為線段AC的中點,求證:AD=CE;
(2)如圖,若點D為線段AC上任意一點,求證:AD=CE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)等邊三角形三線合一的性質即可求得∠DBC的度數(shù),根據(jù)BD=DE即可解題;
(2)作DF∥AB,可證△BDF≌△EDC,可得BF=CE,再證AD=BF即可解題.
(1)∵點D為等邊三角形△ABC邊AC的中點,
∴BD平分∠ABC,AD=DC
∴∠DBE=30°,
∵BD=DE,
∴∠E=∠DBE=30°,
∵∠DCE=180°-∠ACB=120°,
∴∠CDE=180°-120°-30°=30°,
∴∠CDE=∠E =30°∴DC=CE
∴AD=CE;………………4分
(2)作DF∥AB,可得△DFC是等邊三角形,∴DC=CF
∴AC-DC=BC-CF ∴AD=BF
在△BDF和△EDC中,
∴△BDF≌△EDC,(AAS)
∴BF=CE,
∴AD=CE.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,a、b、c分別是∠A、∠B、∠C的對邊,下列條件不能判斷△ABC是直角三角形的是 ( )
A. ∠A=∠C-∠B B. a2=b2-c2 C. a:b:c=2:3:4 D. a=,b=,c=1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是 的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為2 時,則陰影部分的面積為( )
A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( )
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點M,將 沿CD翻折后,點A與圓心O重合,延長OA至P,使AP=OA,連接PC.
(1)求CD的長;
(2)求證:PC是⊙O的切線;
(3)點G為 的中點,在PC延長線上有一動點Q,連接QG交AB于點E.交 于點F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),在矩形ABCD中,BC=8,點P是BC邊上一點,且BP=3,點E是線段CD上的一個動點,把△PCE沿PE折疊,點C的對應點為點F,當點E與點D重合時,點F恰好落在AB上.
(1)求CD的長;
(2)若點F剛好落在線段AD的垂直平分線上時,求線段CE的長;
(3)請直接寫出AF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(0,4),△OAB沿x軸向右平移后得到△O′A′B′,點A的對應點A′是直線y= x上一點,則點B與其對應點B′間的距離為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com