【題目】某校合唱團(tuán)有30名成員,下表是合唱團(tuán)成員的年齡分布統(tǒng)計(jì)表:

年齡(單位:歲)

13

14

15

16

頻數(shù)(單位:名)

5

15

x

10﹣x

對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是(
A.平均數(shù)、中位數(shù)
B.平均數(shù)、方差
C.眾數(shù)、中位數(shù)
D.眾數(shù)、方差

【答案】C
【解析】解:由表可知,年齡為15歲與年齡為16歲的頻數(shù)和為x+10﹣x=10, 則總?cè)藬?shù)為:5+15+10=30,
故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為: =14歲,
即對(duì)于不同的x,關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是眾數(shù)和中位數(shù);
故選C.
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個(gè)數(shù)據(jù)的平均數(shù),可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCEBC上的一點(diǎn),EC=2BE,點(diǎn)DAC的中點(diǎn),設(shè)ABC,ADF,BEF的面積分別為=24,則=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算.

(1)y=2y﹣1

(2)5(x﹣5)+2(x﹣12)=0

(3)y﹣=1﹣

(4)2(x﹣2)﹣(4x﹣1)=3(1﹣x)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蔬菜經(jīng)銷商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過(guò)60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫(xiě)如表:
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷商銷售該種蔬菜的日銷售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;
(3)若該蔬菜經(jīng)銷商每日銷售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷商銷售此種蔬菜的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在□ABCD中,ACBD于點(diǎn)O,點(diǎn)E、點(diǎn)F分別是OA、OC的中點(diǎn),請(qǐng)判斷線段BEDF的關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC在直角坐標(biāo)系中。

(1)請(qǐng)寫(xiě)出ABC各點(diǎn)的坐標(biāo);

(2)求出ABC的面積SABC;

(3)若把ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得A1B1C1,在圖中畫(huà)出A1B1C1,并寫(xiě)出A1B1C1的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)學(xué)興趣小組想測(cè)量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD與地面成30°角,且此時(shí)測(cè)得1米桿的影長(zhǎng)為2米,則電線桿的高度約為米(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CDAB,EFAB,垂足分別為D、F,∠1=∠2,

(1)試判斷DGBC的位置關(guān)系,并說(shuō)明理由.

(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)點(diǎn)A(﹣3,0),F(xiàn)(8,0),B(0,4)三點(diǎn)

(1)求拋物線解析式及對(duì)稱軸;
(2)若點(diǎn)D在線段FB上運(yùn)動(dòng)(不與F,B重合),過(guò)點(diǎn)D作DC⊥軸于點(diǎn)C(x,0),將△FCD沿CD向左翻折,點(diǎn)B對(duì)應(yīng)點(diǎn)為點(diǎn)E,△CDE與△FBO重疊部分面積為S.
①試求出S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量取值范圍.
②是否存在這樣的點(diǎn)C,使得△BDE為直角三角形,若存在,求出C點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線對(duì)稱軸上有一點(diǎn)M,平面內(nèi)有一點(diǎn)N,若以A,B,M,N四點(diǎn)組成的四邊形為菱形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案