【題目】已知:如圖,,平分,平分.求的度數(shù);
請補全下列解法中的空缺部分.
解:過點作交于點
∵(___________)
∴_________(___________)
∵(___________)
∴___________(___________)
且______________(平行于同一直線的兩直線也互相平行)
∴____________(兩直線平行,內錯角相等)
∵平分,平分.
∴_____________,
_________________.(___________)
∴(___________)
∴
總結:兩直線平行時,同旁內角的角平分線_______________.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=,把紙片按如圖所示折疊,使點B落在AD邊上的B′點,AE是折痕.
(1)試判斷B′E與DC的位置關系;并說明理由.
(2)如果∠C=,求∠AEB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究題.
用棋子擺成的“T”字形圖如圖所示:
(1)填寫下表:
圖形序號 | ① | ② | ③ | ④ | … | ⑩ |
每個圖案中棋子個數(shù) | 5 | 8 | … |
(2)寫出第n個“T”字形圖案中棋子的個數(shù)_________________(用含n的代數(shù)式表示);
(3)第20個“T”字形圖案共有棋子____________個?
(4)計算前20個“T”字形圖案中棋子的總個數(shù).
(提示:請你先思考下列問題:第1個圖案與第20個圖案中共有多少個棋子?第2個圖案與第19個圖案中共有多少個棋子?第3個圖案與第18個圖案呢?)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,.
(1)試說明;
(2)AF與DC的位置關系如何? 為什么?
下面是本題的解答過程,請補充完整。
解:(1),(已知)
DEC (_____________________)
又,(已知)
_______,(_____________________)
AB DE (_____________________)
(2)與DC的位置關系是:_______________理由如下:
,(已知)
AGD (_____________________)
又,(已知)
AGD 等量代換
_____ ____ (_____________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】本學期初,我市教育部門對某中學從學生的品德、身心、學習、創(chuàng)新、國際、審美、信息、生活八個方面進行了綜合評價,評價小組從八年級學生中選取部分學生針對“信息素養(yǎng)”進行測試,并將測試結果繪制成如下統(tǒng)計圖(如圖).根據(jù)圖中信息,解答下列問題:
(1)本次選取參加測試的學生人數(shù)是 ___;
(2)學生“信息素養(yǎng)”得分的中位數(shù)落在 _____;
(3)若把每組中各個分數(shù)用這組數(shù)據(jù)的中間值代替(如30﹣40分的中間值為35分),則參加測試的學
生的平均分為多少分?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:已知:A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1.
(1)求2A﹣3B;
(2)若A+2B的值與a的取值無關,求b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N.下面是推理過程,請你填空:
解:∵∠BAE+∠AED=180° (已知) ,
∴AB//DE( ),
∴∠BAE= ( )
又 ∵∠1=∠2(已知)
∴∠BAE-∠1= - (等式性質),
即∠MAE=∠NEA,
∴ ∥ ( ),
∴∠M=∠N(兩直線平行,內錯角相等).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
(1)若AC=9cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,并直接寫出你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com