分析 (1)先求證AB=AC,進(jìn)而求證△ABC、△ACD為等邊三角形,得∠4=60°,AC=AB進(jìn)而求證△ABE≌△ACF,即可求得BE=CF;
(2)根據(jù)△ABE≌△ACF可得S△ABE=S△ACF,故根據(jù)S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解題.
解答 (1)證明:連接AC,如下圖所示,
∵四邊形ABCD為菱形,∠BAD=120°,
∠1+∠EAC=60°,∠3+∠EAC=60°,
∴∠1=∠3,
∵∠BAD=120°,
∴∠ABC=60°,
∴△ABC和△ACD為等邊三角形,
∴∠4=60°,AC=AB,
∴在△ABE和△ACF中,
$\left\{\begin{array}{l}{∠1=∠3}\\{AB=AC}\\{∠ABC=∠4}\end{array}\right.$,
∴△ABE≌△ACF(ASA).
∴BE=CF;
(2)解:四邊形AECF的面積不變.
理由:由(1)得△ABE≌△ACF,
則S△ABE=S△ACF,
故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,
作AH⊥BC于H點(diǎn),則BH=2,
S四邊形AECF=S△ABC=$\frac{1}{2}$BC•AH=$\frac{1}{2}$BC•$\sqrt{A{B}^{2}-B{H}^{2}}$=4$\sqrt{3}$.
點(diǎn)評 本題考查了菱形的性質(zhì)、全等三角形判定與性質(zhì)及三角形面積的計算,求證△ABE≌△ACF是解題的關(guān)鍵,有一定難度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3(x-1)-2(2+3x)=3 | B. | 3(x-1)-2(2x+3)=18 | C. | 3x-1-4x+3=3 | D. | 3x-1-4x+3=18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 支出20元 | B. | 收入20元 | C. | 支出80元 | D. | 收入80元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | M=N | B. | M<N | C. | M>N | D. | 無法比較 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com