已知點P的坐標(biāo)為(-2m,m-6),根據(jù)下列條件分別確定字母m的值或取值范圍.
(1)點P在y軸上;
(2)點P在一、三象限的角平分線上;
(3)點P在第三象限.
分析:(1)根據(jù)y軸上的點的橫坐標(biāo)為0列式計算即可得解;
(2)根據(jù)第一三象限角平分線上的點的橫坐標(biāo)與縱坐標(biāo)相等列式計算即可得解;
(3)根據(jù)第三象限內(nèi)點的橫坐標(biāo)縱坐標(biāo)都是負(fù)數(shù)列式不等式組求解即可.
解答:解:(1)∵點P(-2m,m-6)在y軸上,
∴-2m=0,
∴m=0;

(2)∵點P(-2m,m-6)在一、三象限的角平分線上,
∴-2m=m-6,
∴m=2;

(3)∵點P(-2m,m-6)在第三象限,
-2m<0①
m-6<0②

由①得,m>0,
由②得,m<6,
所以,0<m<6.
點評:本題考查了坐標(biāo)與圖形性質(zhì),主要利用了點的坐標(biāo)的特征,是需要熟記的內(nèi)容.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y=-
2
x
的圖象上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-
2
x
,P點坐標(biāo)為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標(biāo);M1的坐標(biāo)是
 

(2)請你通過改變P點坐標(biāo),對直線M1M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得k﹦
 
,若點P的坐標(biāo)為(m,0)時,則b﹦
 
;
(3)依據(jù)(2)的規(guī)律,如果點P的坐標(biāo)為(6,0),請你求出點M1和點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
kx
相交于點A,B.已知點B的坐標(biāo)為(-2,-2),點A在第一象限內(nèi),且tan∠AOx=4.過點A作直線AC∥x軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖,直線y=x-1與反比例函數(shù)y=
kx
的圖象交于A、B兩點,與x軸交于點C,已知點A的坐標(biāo)為(-1,m).
(1)求反比例函數(shù)的解析式;
(2)若點P(n,-1)是反比例函數(shù)圖象上一點,過點P作PE⊥x軸于點E,延長EP交直線AB于點F,求△CEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點P的坐標(biāo)為(-2,a2+1),則點P一定在( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點P的坐標(biāo)為(1-2a,a-2),且點P到兩坐標(biāo)軸的距離相等,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案