在同一平面直角坐標(biāo)系中,反比例函數(shù)y=-與一次函數(shù)y=-x+2交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△AOB的面積為( )
A.2
B.6
C.10
D.8
【答案】分析:本題需先求出兩個(gè)函數(shù)的交點(diǎn)坐標(biāo),聯(lián)立兩函數(shù)的解析式,所得方程組的解即為A、B點(diǎn)的坐標(biāo).由于△OAB的邊不在坐標(biāo)軸上,因此可用其他圖形面積的和差來(lái)求出△AOB的面積.
解答:解:由題意:,解得,;
∴A(-2,4)、B(4,-2).
如圖:由于一次函數(shù)y=-x+2與y軸的交點(diǎn)坐標(biāo)C(0,2),
所以O(shè)C=2;
因此S△AOB=S△AOC+S△COB=×2×2+×2×4=6,
故選B.
點(diǎn)評(píng):本題難度較大,考查利用反比例函數(shù)和一次函數(shù)的知識(shí)求三角形的面積,因?yàn)椤鰽OB的邊都不在坐標(biāo)軸上,所以直接利用三角形的面積計(jì)算公式來(lái)求這個(gè)三角形的面積比較煩瑣,也比較難,因此需要將這個(gè)三角形轉(zhuǎn)化為兩個(gè)有一邊在坐標(biāo)上的三角形來(lái)求面積.本題也可以求出一次函數(shù)y=-x+2與x軸的交點(diǎn)坐標(biāo)D(2,0),再利用上面的方法來(lái)求△AOB的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=kx+4與y=
k
x
(k≠0)在同一平面直角坐標(biāo)系內(nèi)的圖象大致是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

二元一次方程x-2y=0的解有無(wú)數(shù)個(gè),其中它有一個(gè)解為
x=2
y=1
,所以在平面直角坐標(biāo)系中就可以用點(diǎn)(2,1)表示它的一個(gè)解,
(1)請(qǐng)?jiān)谙聢D中的平面直角坐標(biāo)系中再描出三個(gè)以方程x-2y=0的解為坐標(biāo)的點(diǎn);
(2)過(guò)這四個(gè)點(diǎn)中的任意兩點(diǎn)作直線(xiàn),你有什么發(fā)現(xiàn)?直接寫(xiě)出結(jié)果;
(3)以方程x-2y=0的解為坐標(biāo)的點(diǎn)的全體叫做方程x-2y=0的圖象.想一想,方程x-2y=0的圖象是什么?(直接回答)
(4)由(3)的結(jié)論,在同一平面直角坐標(biāo)系中,畫(huà)出二元一次方程組
x+y=1
2x-y=2
的圖象(畫(huà)在圖中)、由這兩個(gè)二元一次方程的圖象,能得出這個(gè)二元一次方程組的解嗎?請(qǐng)將表示其解的點(diǎn)P標(biāo)在平面直角坐標(biāo)系中,并寫(xiě)出它的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•隨州)正比例函數(shù)y=kx和反比例函數(shù)y=-
k2+1
x
(k是常數(shù)且k≠0)在同一平面直角坐標(biāo)系中的圖象可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)y=-x2+1與y=-x2-1的圖象,并說(shuō)明,通過(guò)怎樣的平移可以由拋物線(xiàn)y=-x2+1得到拋物線(xiàn)y=-x2-1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)L1:y=2x+5與直線(xiàn)L2:y=kx+b在同一平面直角坐標(biāo)系中的圖象如圖,則關(guān)于x的不等式2x+5<kx+b的解集為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案