【題目】解方程:(1

2)若分式方程:無解,求a的值.

【答案】(1)x=2;(2a=23

【解析】

1)通過取分母,去括號,移項,合并同類項,未知數(shù)系數(shù)化為1,即可求解;

2)先去分母,整理得(3-a)x=4-2a,分兩種情況:① 當分式有增根時,② 當方程(3-ax=4-2a無解時,分別求出a的值,即可.

1)去分母得:

去括號,移項,合并同類項得:2x=4,

解得:x=2

經(jīng)檢驗:x=2是方程的根;

2)去分母得:3x=a(x-2)+4,即:(3-a)x=4-2a

分兩種情況討論:

當分式有增根時,即x(x-2)=0,得x=02,當x=0時,a=2;x=2時得6=4,不成立,

當方程(3-ax=4-2a無解時,即3-a=0a=3;

∴原方程無解時,a=23

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生體質(zhì)情況,從各年級學(xué)生中隨機抽取部分學(xué)生進行體能測試.

每個學(xué)生的測試成績按標準對應(yīng)為優(yōu)秀、良好、及格、不及格四個等級.統(tǒng)計員在將測試數(shù)據(jù)繪制 成圖表時發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計4人,良好漏統(tǒng)計6人,于是及時更正,從而形成如下圖表.請按正確數(shù)據(jù)解答下列各題:

(1)填寫統(tǒng)計表.

(2)根據(jù)調(diào)整后數(shù)據(jù),補全條形統(tǒng)計圖.

(3)若該校共有學(xué)生1500人,請你估算出該校體能測試等級為優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為8元/千克的水果,經(jīng)試銷發(fā)現(xiàn),銷量y(千克)與銷售單價x(元)符合一次函數(shù)y=kx+b,且當x=10時,y=300;當x=13時,y=150.

(1)求y(千克)與x(元)(x8)的函數(shù)關(guān)系式;

(2)設(shè)該超市銷售這種水果每天獲取的利潤為W元,那么當銷售單價為何值時,每天可獲得的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖的直角坐標系中,已知點A(2,0)、B(0,-4),將線段AB繞點A按逆時針方向旋轉(zhuǎn)90°至AC.

(1)求點C的坐標;

(2)若拋物線y=-x2+ax+4經(jīng)過點C.

求拋物線的解析式;

在拋物線上是否存在點P(點C除外)使ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標系內(nèi),ABC各頂點的坐標分別是A(﹣2,4),B(﹣4,3),C(﹣1,1).將ABC向右平移5個單位長度,再向下平移4個單位長度得到ABC

1)請作出平移后的ABC,并寫出ABC各頂點的坐標;

2)如果將ABC看成是由ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD3,CD4,點PAC上一個動點(點P與點A,C不重合),過點P分別作PEBC于點E,PFBCAB于點F,連接EF,則EF的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,斜邊的中垂線于點,交的外角平分線于點,于點,垂直的延長線與點,連接于點,現(xiàn)有不列結(jié)論:①,②,③,④,⑤,其中正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案