(2000•吉林)如圖,⊙O的外切梯形ABCD中,若AD∥BC,那么∠DOC的度數(shù)為( )
A.70°
B.90°
C.60°
D.45°
【答案】分析:由于AD、DC、CB都是⊙O的切線,根據(jù)切線長定理知:∠ADO=∠CDO,∠DCO=∠BCO;而AD∥BC,則2∠ODC和2∠OCD互補,由此可求得∠DOC的度數(shù).
解答:解:∵DA、CD、CB都與⊙O相切,
∴∠ADO=∠ODC,∠OCD=∠OCB;
∵AD∥BC,
∴∠ADC+∠BCD=180°;
∴∠ODC+∠OCD=(∠ADC+∠BCD)=×180°=90°,即∠DOC=90°;
故選B.
點評:此題主要考查的是切線長定理及平行線的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(02)(解析版) 題型:解答題

(2000•吉林)如圖,邊長為2cm的正六邊形ABCDEF的中心在坐標(biāo)原點上,點B在x軸的負(fù)半軸上.
(1)求出點A、點D、點E的坐標(biāo);
(2)求出圖象過A、D、E三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年吉林省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•吉林)如圖,邊長為2cm的正六邊形ABCDEF的中心在坐標(biāo)原點上,點B在x軸的負(fù)半軸上.
(1)求出點A、點D、點E的坐標(biāo);
(2)求出圖象過A、D、E三點的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:解答題

(2000•吉林)如圖,一起重機的機身高21m,吊桿AB長36m,吊桿與水平線的夾角∠BAC可從30°升到80°.求起重機起吊的最大高度(吊鉤本身的長度和所掛重物的高度忽略不計)和當(dāng)起重機位置不變時使用的最大水平距離(精確到0.1米,sin80°=0.9848,cos80°=0.1736,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2000•吉林)如圖,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點C,弦BD∥XY,AC、BD相交于點E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年吉林省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2000•吉林)如圖,⊙O中弦AB、CD相交于點P,PC=PD,PA=3cm,PB=4cm.那么CD的長為( )

A.4cm
B.2cm
C.4cm
D.2cm

查看答案和解析>>

同步練習(xí)冊答案