【題目】某校七年級(1)班班主任對本班學(xué)生進行了“我最喜歡的課外活動”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音樂類(記為B)、球類(記為C)、其他類(記為D).根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個學(xué)生都進行了登記且只登記了一種自己最喜歡的課外活動.班主任根據(jù)調(diào)查情況把學(xué)生都進行了歸類,并制作了如下兩幅統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:
(1)七年級(1)班學(xué)生總?cè)藬?shù)為人,扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為度,請補全條形統(tǒng)計圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長書法,另兩名擅長繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機抽取兩名學(xué)生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率.

【答案】
(1)48;105
(2)

解:分別用A,B表示兩名擅長書法的學(xué)生,用C,D表示兩名擅長繪畫的學(xué)生, 畫樹狀圖得: ∵共有12種等可能的結(jié)果,抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的有8種情況, ∴抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的概率為: =


【解析】(1)∵七年級(1)班學(xué)生總?cè)藬?shù)為:12÷25%=48(人), ∴扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為為:360°× =105°; 故答案為:48,105; C類人數(shù):48-4-12-14=18(人),如圖:
(1)由條形統(tǒng)計圖與扇形統(tǒng)計圖可得七年級(1)班學(xué)生總?cè)藬?shù)為:12÷25%=48(人),繼而可得扇形統(tǒng)計圖中D類所對應(yīng)扇形的圓心角為為:360°× =105°;然后求得C類的人數(shù),則可補全統(tǒng)計圖; (2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與抽到的兩名學(xué)生恰好是一名擅長書法,另一名擅長繪畫的情況,再利用概率公式即可求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分別繞直線AB,CD旋轉(zhuǎn)一周,所得幾何體的表面積分別為S1 , S2 , 則|S1﹣S2|=(平方單位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,平行四邊形ABCD在第一象限,且AB∥x軸,直線y=﹣x從原點出發(fā)沿x軸正方向平移,被平行四邊形ABCD截得的線段EF的長度l與平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為( )

A.4
B.
C.8
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠B=90°,以AB上的一點O為圓心,以O(shè)A為半徑的圓交AC于點D,交AB于點E.
(1)求證:ACAD=ABAE;
(2)如果BD是⊙O的切線,D是切點,E是OB的中點,當(dāng)BC=2時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=(x﹣3)(x+1)與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點C,點D為頂點.

(1)求點B及點D的坐標(biāo).
(2)連結(jié)BD,CD,拋物線的對稱軸與x軸交于點E.
①若線段BD上一點P,使∠DCP=∠BDE,求點P的坐標(biāo).
②若拋物線上一點M,作MN⊥CD,交直線CD于點N,使∠CMN=∠BDE,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)第五次、第六次全國人口普查結(jié)果顯示:某市常住人口總數(shù)由第五次的400萬人增加到第六次的450萬人,常住人口的學(xué)歷狀況統(tǒng)計圖如下(部分信息未給出):
解答下列問題:
(1)計算第六次人口普查小學(xué)學(xué)歷的人數(shù),并把條形統(tǒng)計圖補充完整;
(2)第六次人口普查結(jié)果與第五次相比,該市常住人口中高中學(xué)歷人數(shù)增長的百分比是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四條線段a,b,c,d如圖,a:b:c:d=1:2:3:4
(1)選擇其中的三條線段為邊作一個三角形(尺規(guī)作圖,要求保留作圖痕跡,不必寫出作法);
(2)任取三條線段,求以它們?yōu)檫吥茏鞒鋈切蔚母怕剩?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點為A( ,1)的拋物線經(jīng)過坐標(biāo)原點O,與x軸交于點B.

(1)求拋物線對應(yīng)的二次函數(shù)的表達式;
(2)過B作OA的平行線交y軸于點C,交拋物線于點D,求證:△OCD≌△OAB;
(3)在x軸上找一點P,使得△PCD的周長最小,求出P點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案