【題目】如圖,隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)是12m,寬是4m.按照?qǐng)D中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長(zhǎng)方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

【答案】
(1)解:根據(jù)題意得B(0,4),C(3, ),

把B(0,4),C(3, )代入y=﹣ x2+bx+c得 ,

解得

所以拋物線解析式為y=﹣ x2+2x+4,

則y=﹣ (x﹣6)2+10,

所以D(6,10),

所以拱頂D到地面OA的距離為10m


(2)解:由題意得貨運(yùn)汽車最外側(cè)與地面OA的交點(diǎn)為(2,0)或(10,0),

當(dāng)x=2或x=10時(shí),y= >6,

所以這輛貨車能安全通過


(3)解:令y=8,則﹣ (x﹣6)2+10=8,解得x1=6+2 ,x2=6﹣2 ,

則x1﹣x2=4

所以兩排燈的水平距離最小是4 m


【解析】(1)先確定B點(diǎn)和C點(diǎn)坐標(biāo),然后利用待定系數(shù)法求出拋物線解析式,再利用配方法確定頂點(diǎn)D的坐標(biāo),從而得到點(diǎn)D到地面OA的距離;(2)由于拋物線的對(duì)稱軸為直線x=6,而隧道內(nèi)設(shè)雙向行車道,車寬為4m,則貨運(yùn)汽車最外側(cè)與地面OA的交點(diǎn)為(2,0)或(10,0),然后計(jì)算自變量為2或10的函數(shù)值,再把函數(shù)值與6進(jìn)行大小比較即可判斷;(3)拋物線開口向下,函數(shù)值越大,對(duì)稱點(diǎn)之間的距離越小,于是計(jì)算函數(shù)值為8所對(duì)應(yīng)的自變量的值即可得到兩排燈的水平距離最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算。
(1)解不等式(組):3x+2≤x﹣2;
(2) 并把不等式組的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,平行四邊形ABCD在第一象限,且AB∥x軸,直線y=﹣x從原點(diǎn)出發(fā)沿x軸正方向平移,被平行四邊形ABCD截得的線段EF的長(zhǎng)度l與平移的距離m的函數(shù)圖象如圖②,那么平行四邊形ABCD的面積為( )

A.4
B.
C.8
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司經(jīng)銷甲種型號(hào)電腦,今年三月份的電腦售價(jià)比去年同期每臺(tái)降價(jià)1000元,如果賣出相同數(shù)量的電腦,去年銷售額為10萬(wàn)元,今年銷售額只有8萬(wàn)元.
(1)今年三月份甲種電腦每臺(tái)售價(jià)多少元?
(2)為了增加收入,電腦公司決定再經(jīng)銷乙種型號(hào)電腦.已知甲種電腦每臺(tái)進(jìn)價(jià)為3500元,乙種電腦每臺(tái)進(jìn)價(jià)為3000元,公司預(yù)計(jì)用不多于5萬(wàn)元且不少于4.8萬(wàn)元的資金購(gòu)進(jìn)這兩種電腦共15臺(tái),有幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為15,sin∠BAC= ,則對(duì)角線AC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①2a+b=0;②a+c>b;③拋物線與x軸的另一個(gè)交點(diǎn)為(3,0);④abc>0.其中正確的結(jié)論是(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級(jí)(1)班班主任對(duì)本班學(xué)生進(jìn)行了“我最喜歡的課外活動(dòng)”的調(diào)查,并將調(diào)查結(jié)果分為書法和繪畫類(記為A)、音樂類(記為B)、球類(記為C)、其他類(記為D).根據(jù)調(diào)查結(jié)果發(fā)現(xiàn)該班每個(gè)學(xué)生都進(jìn)行了登記且只登記了一種自己最喜歡的課外活動(dòng).班主任根據(jù)調(diào)查情況把學(xué)生都進(jìn)行了歸類,并制作了如下兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問題:
(1)七年級(jí)(1)班學(xué)生總?cè)藬?shù)為人,扇形統(tǒng)計(jì)圖中D類所對(duì)應(yīng)扇形的圓心角為度,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)學(xué)校將舉行書法和繪畫比賽,每班需派兩名學(xué)生參加,A類4名學(xué)生中有兩名學(xué)生擅長(zhǎng)書法,另兩名擅長(zhǎng)繪畫.班主任現(xiàn)從A類4名學(xué)生中隨機(jī)抽取兩名學(xué)生參加比賽,請(qǐng)你用列表或畫樹狀圖的方法求出抽到的兩名學(xué)生恰好是一名擅長(zhǎng)書法,另一名擅長(zhǎng)繪畫的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,C是AB延長(zhǎng)線上一點(diǎn),BC=OB,CE是⊙O的切線,切點(diǎn)為D,過點(diǎn)A作AE⊥CE,垂足為E,則CD:DE的值是(
A.
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大海中某燈塔P周圍10海里范圍內(nèi)有暗礁,一艘海輪在點(diǎn)A處觀察燈塔P在北偏東60°方向,該海輪向正東方向航行8海里到達(dá)點(diǎn)B處,這時(shí)觀察燈塔P恰好在北偏東45°方向.如果海輪繼續(xù)向正東方向航行,會(huì)有觸礁的危險(xiǎn)嗎?試說明理由.(參考數(shù)據(jù): ≈1.73)

查看答案和解析>>

同步練習(xí)冊(cè)答案