【題目】某專營商場銷售一種品牌電腦,每臺電腦的進(jìn)貨價(jià)是0.4萬元.圖中的直線l1表示該品牌電腦一天的銷售收入y1(萬元)與銷售量x(臺)的關(guān)系,已知商場每天的房租、水電、工資等固定支出為3萬元.

(1)直線l1對應(yīng)的函數(shù)表達(dá)式是 , 每臺電腦的銷售價(jià)是萬元;
(2)寫出商場一天的總成本y2(萬元)與銷售量x(臺)之間的函數(shù)表達(dá)式:;
(3)在圖的直角坐標(biāo)系中畫出第(2)小題的圖象(標(biāo)上l2);
(4)通過計(jì)算說明:每天銷售量達(dá)到多少臺時,商場可以盈利.

【答案】
(1)y=0.8x;0.8
(2)y2=0.4x+3
(3)解:如圖所示,


(4)解:商場每天的利潤W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,

當(dāng)W>0,即0.4x﹣3>0時商場開始盈利,解得:x>7.5.

答:每天銷售量達(dá)到8臺時,商場可以盈利


【解析】解:(1)設(shè)y=kx,將(5,4)代入,得k=0.8,故y=0.8x,
每臺電腦的售價(jià)為: =0.8(萬元);(2)根據(jù)題意,商場每天的總成本y2=0.4x+3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某中學(xué)七、八年級各選派10名選手參加學(xué)校舉辦的環(huán)保知識競賽,計(jì)分采用10分制,選手得分均為整數(shù),成績達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀,這次競賽后,七、八年級兩支代表隊(duì)選手成績分布的條形統(tǒng)計(jì)圖和成績統(tǒng)計(jì)分析表(不完整)如下所示:

隊(duì)別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

七年級

m

3.41

90%

20%

八年級

7.1

n

80%

10%


(1)觀察條形統(tǒng)計(jì)圖,可以發(fā)現(xiàn):八年級成績的標(biāo)準(zhǔn)差 , 七年級成績的標(biāo)準(zhǔn)差(填“>”、“<”或“=”),表格中m= , n=
(2)計(jì)算七年級的平均分;
(3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊(duì)成績比八年級隊(duì)好,但也有人說八年級隊(duì)成績比七年級隊(duì)好.請你給出兩條支持八年級隊(duì)成績好的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列性質(zhì)中,平行四邊形不一定具有的是(

A. 對邊相等 B. 對邊平行 C. 對角互補(bǔ) D. 內(nèi)角和為360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種藥品的原價(jià)是25元,經(jīng)過連續(xù)兩次降價(jià)后每盒16元,假設(shè)兩次降價(jià)的平均降價(jià)率相同,求平均降價(jià)率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】去年“雙11”購物節(jié)的快遞量暴增,某快遞公司要在街道旁設(shè)立一個派送還點(diǎn),向A,B兩居民區(qū)投送快遞,派送點(diǎn)應(yīng)該設(shè)在什么地方,才能使它到A,B的距離之和最短?快遞員根據(jù)實(shí)際情況,以街道為x軸,建立了如圖所示的平面直角坐標(biāo)系,測得坐標(biāo)A(﹣2,2)、B(6,4),則派送點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過A(2, 0), C(0, 6)兩點(diǎn)的拋物線y=-x2axbx軸交于另一點(diǎn)B,點(diǎn)D是拋物線的頂點(diǎn).

(1)求a、b的值;

(2)點(diǎn)Px軸上的一個動點(diǎn),過P作直線l//AC交拋物線于點(diǎn)Q.隨著點(diǎn)P的運(yùn)動,若以A、PQ、C為頂點(diǎn)的四邊形是平行四邊形,請直接寫出符合條件的點(diǎn)Q的坐標(biāo);

(3)在直線AC上是否存在一點(diǎn)M,使BDM的周長最小,若存在,請找出點(diǎn)M并求出點(diǎn)M的坐標(biāo).若不存在,請說明理由。

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動時(點(diǎn)C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式6xy29x2yy3因式分解,最后結(jié)果為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形具有而平行四邊形不一定具有的性質(zhì)是(

A. 對角相等B. 對角線互相垂直C. 對角線互相平分D. 對邊平行

查看答案和解析>>

同步練習(xí)冊答案