【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關系并說明理由;
(2)如圖2,在(1)的結論下,當∠E=90°保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關系?
(3)如圖3,在(1)的結論下,P為線段AC上一定點,點Q為直線CD上一動點,當點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關系? (2、3小題只需選一題說明理由)
【答案】
(1)解:∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+ ∠MCD=90°;
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+ ∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【解析】(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結論;(2)過E作EF∥AB,根據(jù)平行線的性質可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結論;(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
【考點精析】根據(jù)題目的已知條件,利用平行線的判定與性質的相關知識可以得到問題的答案,需要掌握由角的相等或互補(數(shù)量關系)的條件,得到兩條直線平行(位置關系)這是平行線的判定;由平行線(位置關系)得到有關角相等或互補(數(shù)量關系)的結論是平行線的性質.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是一個圓柱形的餅干盒,在盒子外側下底面的點A處有甲、乙兩只螞蟻,它們都想要吃到上底面外側B′處的食物:甲螞蟻沿A→A′→B′的折線爬行,乙螞蟻沿圓柱的側面爬行:若∠AOB=∠A′O′B′=90°(AA′、BB′都與圓柱的中軸線OO′平行),圓柱的底面半徑是12cm,高為1cm,則:
(1)A′B′=cm,甲螞蟻要吃到食物需爬行的路程長l1=cm;
(2)乙螞蟻要吃到食物需爬行的最短路程長l2=cm(π取3);
(3)若兩只螞蟻同時出發(fā),且爬行速度相同,在乙螞蟻采取最佳策略的前提下,哪只螞蟻先到達食物處?請你通過計算或合理的估算說明理由.(參考數(shù)據(jù):π取3, ≈1.4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某專營商場銷售一種品牌電腦,每臺電腦的進貨價是0.4萬元.圖中的直線l1表示該品牌電腦一天的銷售收入y1(萬元)與銷售量x(臺)的關系,已知商場每天的房租、水電、工資等固定支出為3萬元.
(1)直線l1對應的函數(shù)表達式是 , 每臺電腦的銷售價是萬元;
(2)寫出商場一天的總成本y2(萬元)與銷售量x(臺)之間的函數(shù)表達式:;
(3)在圖的直角坐標系中畫出第(2)小題的圖象(標上l2);
(4)通過計算說明:每天銷售量達到多少臺時,商場可以盈利.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程: 如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代換).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代換).
∴AB∥CD().
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角形的兩邊長分別為4和7,第三邊長是方程x2﹣7x+12=0的解,則第三邊的長為( 。
A. 3B. 4C. 3或4D. 無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用四舍五入法按要求把2.0503分別取近似數(shù),其中錯誤的是( )
A. 2.1(精確到0.1) B. 2.05(精確到0.001)
C. 2.05(精確到百分位) D. 2.050(精確到千分位)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com