【題目】已知:如圖,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,點P從點A開始沿AD邊向點D以1cm/秒的速度移動,點Q從點C開始沿CB邊向點B以2cm/秒的速度移動.如果P、Q分別從A、C同時出發(fā).設(shè)移動的時間為t.

求:(1)t為何值時,梯形PQCD是等腰梯形;

(2)t為何值時,AB的中點E到線段PQ的距離為7cm.

【答案】(1)8秒;(2)t=3.5或t=7

【解析】試題分析:(1)過P作PN⊥BC于N,過D作DM⊥BC于M,先證明四邊形ABMD是矩形,從而得到AD=BM,再根據(jù)邊與邊之間的關(guān)系,列一元一次方程3t﹣21=3,得到t=8,即t=8秒時,梯形PQCD是等腰梯形;

(2)在Rt△PQM中,表示出PM=14,QM=3t﹣1,然后根據(jù)PM2+QM2=PQ2,得到142+(3t﹣21)2=(21﹣t)2,求得t值即可.

試題解析:

如圖1,過P作PN⊥BC于N,過D作DM⊥BC于M,

∵AD∥BC,∠B=90°,DM⊥BC,

∴四邊形ABMD是矩形,AD=BM.

∴MC=BC﹣BM=BC﹣AD=3.

又∵QN=BN﹣BQ=AP﹣BQ=t﹣(21﹣2t)=3t﹣21.

若梯形PQCD為等腰梯形,則QN=MC=3.

得3t﹣21=3,t=8,

即t=8秒時,梯形PQCD是等腰梯形.

(2)如圖2,過E作EF⊥PQ于F,連接PE,EQ,當(dāng)EF=7cm時,

∵AE=BE=AB=×14=7cm,

∴AE=EF=BE,

∵AD∥BC,∠B=90°,

∴∠A=90°,

∵PE=PE,EQ=EQ,

∴△AEP≌△FEP,△BEQ≌△FEQ,

∴PA=PF=t,BQ=FQ=21﹣2t,

∴PQ=PF+FQ=21﹣t,

在Rt△PQM中,PM=14,QM=3t﹣1,

∵PM2+QM2=PQ2,

∴142+(3t﹣21)2=(21﹣t)2,

解得:t=3.5或t=7,

∴當(dāng)t為3.5或7時,AB的中點E到線段PQ的距離為7cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+8與x軸、y軸分別相交于點A、B,設(shè)M是OB上一點,若將ABM沿AM折疊,使點B恰好落在x軸上的點B′處.求:

(1)點B′的坐標(biāo);

(2)直線AM所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】寫出一個平面直角坐標(biāo)系中第三象限內(nèi)點的坐標(biāo):( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,等腰Rt△ABC的頂點A、C在坐標(biāo)軸上運動,且∠ACB=90°,AC=BC.

(1)如圖1,當(dāng)A(0,-2),C(1,0),點B在第四象限時,則點B的坐標(biāo)為_____;

(2)如圖2,當(dāng)點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BDy軸于點D,試判斷哪一個是定值,并說明定值是多少?請證明你的結(jié)論.

(3)如圖3,當(dāng)點C在y軸正半軸上運動,點A在x軸正半軸上運動,使點D恰為BC的中點,連接DE,求證:∠ADC=∠BDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點A(x,2)向上平移3個單位長度,再向右平移2個單位長度得到點B(-3,y),則xy分別為(  )

A. -6,-4 B. -1,5 C. -5,3 D. -5,5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10m=5,10n=3,則102m+3n=   

【答案】675.

【解析】102m+3n=102m103n=(10m)2(10n)3=5233=675,

故答案為:675.

點睛:此題考查了冪的乘方與積的乘方, 同底數(shù)冪的乘法. 首先根據(jù)同底數(shù)冪的乘法法則,可得102m+3n=102m×103n,然后根據(jù)冪的乘方的運算方法,可得102m×103n=(10m2×(10n3,最后把10m=5,10n=2代入化簡后的算式,求出102m+3n的值是多少即可.

型】填空
結(jié)束】
18

【題目】計算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列因式分解正確的是( 。

A. x2﹣y2=(x﹣y)2 B. xy﹣x=x(y﹣1)

C. a2+a+1=(a+1)2 D. 2x+y=2(x+y)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】增強公民的節(jié)約意識,合理利用天然氣資源,某市自1月1日起對市區(qū)民用管道天然氣價格進行調(diào)整,實行階梯式氣價,調(diào)整后的收費價格如表所示:

每月用氣量

單價(元/m3

不超出75m3的部分

2.5

超出75m3不超出125m3的部分

a

超出125m3的部分

a+0.25

(1)若甲用戶3月份的用氣量為60m3,則應(yīng)繳費   元;

(2)若調(diào)價后每月支出的燃?xì)赓M為y(元),每月的用氣量為x(m3),y與x之間的關(guān)系如圖所示,求a的值及y與x之間的函數(shù)關(guān)系式;

(3)在(2)的條件下,若乙用戶2、3月份共用1氣175m3(3月份用氣量低于2月份用氣量),共繳費455元,乙用戶2、3月份的用氣量各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】互聯(lián)網(wǎng)“微商”經(jīng)營已成為大眾創(chuàng)業(yè)新途徑,某微信平臺上一件商品標(biāo)價為200元,按標(biāo)價的五折銷售,仍可獲利20元,則這件商品的進價為
A.120元
B.100元
C.80元
D.60元

查看答案和解析>>

同步練習(xí)冊答案