【題目】如圖,設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,黑甲殼蟲(chóng)從點(diǎn)A出發(fā),白甲殼蟲(chóng)從點(diǎn)C1出發(fā),它們以相同的速度分別沿棱向前爬行.黑甲殼蟲(chóng)爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,白甲殼蟲(chóng)爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,那么當(dāng)黑、白兩個(gè)甲殼蟲(chóng)各爬行完第2018條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的最短路程的平方是(  )

A. 2 B. 3 C. 4 D. 5

【答案】B

【解析】

黑甲殼蟲(chóng)爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,

白甲殼蟲(chóng)爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,兩甲殼蟲(chóng)的路線都有周期,求出最后停止的點(diǎn),根據(jù)勾股定理可得即可.

因?yàn)楹诩讱はx(chóng)爬行的路線是:AA1→A1D1→D1C1→C1C→CB→BA→AA1→A1D1…,

白甲殼蟲(chóng)爬行的路線是:C1C→CB→BB1→B1C1→C1C→CB…,

因此可以判斷兩個(gè)甲殼蟲(chóng)爬行一圈黑甲殼蟲(chóng)一圈6條棱, 因?yàn)?/span>2018÷6=336…2,

白甲殼蟲(chóng)一圈4條棱,2018÷4=504…2,

所以黑甲殼蟲(chóng)爬行完第2018條棱停止的點(diǎn)是D1,白甲殼蟲(chóng)爬行完第2018條棱停止的點(diǎn)是B,

根據(jù)勾股定理可得: BD12=.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,點(diǎn)P為線段BE延長(zhǎng)線上一點(diǎn),連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點(diǎn)F
(1)求證: ;
(2)連接BD,請(qǐng)你判斷AC與BD有什么位置關(guān)系?并說(shuō)明理由;
(3)設(shè)PE=x,△PBD的面積為S,求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB=1,連接AC,以AC為邊作第一個(gè)正方形ACC1D1 , 連接AC1 , 以AC1為邊作第二個(gè)正方形AC1C2D2 , 則第10個(gè)正方形邊長(zhǎng)為(

A.8
B.16
C.32
D.64

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是最大的負(fù)整數(shù),b5的相反數(shù),c=|2|,a、bc分別是點(diǎn)A. B.C在數(shù)軸上對(duì)應(yīng)的數(shù).

(1)a、b、c的值,并在數(shù)軸上標(biāo)出點(diǎn)A. B. C.

(2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)Q可以追上點(diǎn)P?

(3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)MA. B.C三點(diǎn)的距離之和等于12,請(qǐng)直接寫(xiě)出所有點(diǎn)M對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周?chē)锨椎姆秶鷥?nèi)形成極端氣候,有極強(qiáng)的破壞力。如圖,有一臺(tái)風(fēng)中心沿東西方向AB由點(diǎn)A行駛向點(diǎn)B,已知點(diǎn) C為一海港,且點(diǎn) C與直線 AB上兩點(diǎn)A,B的距離分別為300km和400km,又 AB=500km,以臺(tái)風(fēng)中心為圓心周?chē)?50km以?xún)?nèi)為受影響區(qū)域。

(1)海港C受臺(tái)風(fēng)影響嗎?為什么?

(2)若臺(tái)風(fēng)的速度為20km/h,臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱(chēng)其為“趙爽弦圖”,它是用八個(gè)全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1S2,S3.若S1+S2+S315,則S2的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶大坪時(shí)代天街已成為人們周末休閑娛樂(lè)的重要場(chǎng)所,時(shí)代天街從一樓到二樓有一自動(dòng)扶梯(如圖1),圖2是側(cè)面示意圖.已知自動(dòng)扶梯AC的坡度為i=1:2.4,AC=13m,BE是二樓樓頂,EF∥MN,B是EF上處在自動(dòng)扶梯頂端C正上方的一點(diǎn),且BC⊥EF,在自動(dòng)扶梯底端A處測(cè)得B點(diǎn)仰角為42°.(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

為了吸引顧客,開(kāi)發(fā)商想在P處放置一個(gè)高10m的《瘋狂動(dòng)物城》的裝飾雕像,并要求雕像最高點(diǎn)與二樓頂層要留出2m距離好放置燈具,請(qǐng)問(wèn)這個(gè)雕像能放得下嗎?如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合,若BC=3,則折痕CE的長(zhǎng)為(

A.2
B.
C.
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論:
①2a﹣b=0;
②abc>0;
③4ac﹣b2<0;
④9a+3b+c<0;
⑤關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個(gè)相等實(shí)數(shù)根;
⑥8a+c<0.
其中正確的個(gè)數(shù)是( )

A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案