分析 (1)連結(jié)OC,如圖,由于∠A=∠OCA,則根據(jù)三角形外角性質(zhì)得∠BOC=2∠A,而∠ABD=2∠BAC,所以∠ABD=∠BOC,根據(jù)平行線的判定得到OC∥BD,再CE⊥BD得到OC⊥CE,然后根據(jù)切線的判定定理得CF為⊙O的切線;
(2)連接AD、AE、過點O作OH⊥BD于點H,由此可知△DAE是直角三角形,可設(shè)DE=4x,AD=3x,利用四邊形OCEH是矩形即可表示BD的長度,利用勾股定理即可求出x的值.再證明∴△BOH∽△BFE即可求出BD和EF的值.
解答 (1)證明:連結(jié)OC,如圖,
∵OA=OC,
∴∠A=∠OCA,
∴∠BOC=∠A+∠OCA=2∠A,
∵∠ABD=2∠BAC,
∴∠ABD=∠BOC,
∴OC∥BD,
∵CE⊥BD,
∴OC⊥CE,
∴CF為⊙O的切線;
(2)連接AD、AE、
過點O作OH⊥BD于點H,
∵AB是⊙O的直徑,
∴∠D=90°,
∴tan∠DAE=$\frac{DE}{AD}$=$\frac{4}{3}$
設(shè)DE=4x,AD=3x,
由(1)易證:四邊形OCEH是矩形,
∴OC=EH=$\frac{5}{2}$,
∴DH=DE-EH=4x-$\frac{5}{2}$,
由垂徑定理可知:BD=2DH=8x-5,
在Rt△ABD中,AB=5,
由勾股定理可知:52=(3x)2+(8x-5)2
73x2-80x=0,
解得:x=0(舍去)或x=$\frac{80}{73}$,
∴BD=8x-5=$\frac{275}{73}$;
∴BH=DH=4x-$\frac{5}{2}$=$\frac{275}{146}$,
BE=EH-BH=5-4x=$\frac{45}{73}$,
易證:OH是△ABD的中位線,
∴OH=$\frac{3}{2}$x=$\frac{120}{73}$
∵EF∥OH,
∴△BOH∽△BFE
∴$\frac{OH}{EF}=\frac{BH}{BE}$
∴EF=$\frac{432}{803}$
點評 本題考查了切線的判定:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.也考查了相似三角形的判定與性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | y=(x+1)2 | B. | y=(x-1)2 | C. | y=(x-1)2+1 | D. | y=(x-1)2-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 19℃ | B. | 19.1℃ | C. | 18.9℃ | D. | 21℃ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com