
解:(1)連接OO
1,連接O
1C,
∵圓O
1與半圓O內(nèi)切,半圓O的半徑為2,圓O
1的半徑為y,
∴OO
1=2-y,
又半圓O與AB切于點C,
∴O
1C⊥OA,O
1C=y,
又AC=x,則OC=OA-AC=2-x,
在直角三角形O
1OC中,根據(jù)勾股定理得:OO
12=O
1C
2+OC
2,
即(2-y)
2=y
2+(2-x)
2,
則y=-

x
2+x(0<x<4);
(2)二次函數(shù)y=-

x
2+x,
當x=-

=-

=2時,y
max=-

×2
2+2=1,
令y=0,得到-

x
2+x=0,解得:x=0或x=4,
∴拋物線與x軸交于(0,0)及(4,0),對稱軸為直線x=2,
作出二次函數(shù)的圖象,如圖所示.
分析:(1)連接OO
1,連接O
1C,由圓O
1與半圓O內(nèi)切,根據(jù)兩圓內(nèi)切的性質(zhì)得到圓心距等于兩半徑相減,表示出OO
1,再由圓O
1與AB相切,根據(jù)切線的性質(zhì)得到O
1C垂直于AB,且O
1C為圓O
1的半徑y(tǒng),再由OA-AC表示出OC的長,在直角三角形OO
1C中,根據(jù)勾股定理列出關(guān)系式,化簡后即可得到y(tǒng)與x的函數(shù)解析式,根據(jù)AC小于直徑AB得出x的范圍;
(2)根據(jù)二次函數(shù)求最值的方法,由a小于0,得到二次函數(shù)有最大值,故當x等于頂點橫坐標時,y的最大值為頂點的縱坐標,并令y=0得出關(guān)于x的方程,求出方程的解得到拋物線與x軸的交點坐標,再求出拋物線的對稱軸,在平面直角坐標系中畫出拋物線的圖象即可.
點評:此題考查了相切兩圓的性質(zhì),切線的性質(zhì),以及二次函數(shù)的圖象與性質(zhì),兩圓相切有兩種情況:兩圓內(nèi)切時,其圓心距等于兩半徑相減;兩圓外切時,圓心距等于兩半徑相加,直線與圓相切時,切線垂直于過切點的半徑,熟練掌握這些性質(zhì)是解本題的關(guān)鍵.