若一個(gè)矩形的短邊與長(zhǎng)邊的比值為(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD;
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由.
(1)(2)四邊形EBCF是是黃金矩形,理由見解析
【解析】解(1)
(2)答:四邊形EBCF是是黃金矩形. …………………4分
證明:∵四邊形AEFD是正方形,
∴∠AEF=90° ,∴∠BEF=90°,
∵四邊形ABCD是矩形,
∴∠B=∠C=90°
∴∠BEF=∠B=∠C=90°,∴四邊形EBCF是矩形. …………………6分
設(shè)CD=, AD=b,則有
∴ ………8分
∴矩形EBCF是黃金矩形. …………………9分
(1)只需在矩形的長(zhǎng)上截取AE=AD,DF=AD,連接EF即可,
(2)可以結(jié)合(1)中正方形的性質(zhì)求得矩形EBCF的寬與長(zhǎng)的比進(jìn)行分析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
MP |
MN |
PN |
MP |
| ||
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆浙江省寧波市九年級(jí)中考適應(yīng)性考試(一)數(shù)學(xué)卷(帶解析) 題型:解答題
若一個(gè)矩形的短邊與長(zhǎng)邊的比值為(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
(1)操作:請(qǐng)你在如圖所示的黃金矩形ABCD(AB>AD)中,以短邊AD為一邊作正方形AEFD;
(2)探究:在(1)中的四邊形EBCF是不是黃金矩形?若是,請(qǐng)予以證明;若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com