在△ABC中,AB=15,AC=13,高AD=12,則BC的長________.

14和4
分析:分兩種情況討論:銳角三角形和鈍角三角形,根據(jù)勾股定理求得BD,CD,再由圖形求出BC,在銳角三角形中,BC=BD+CD,在鈍角三角形中,BC=BD-CD.
解答:解:(1)如圖,銳角△ABC中,AC=13,AB=15,BC邊上高AD=12,
∵在Rt△ACD中AC=13,AD=12,
∴CD2=AC2-AD2=132-122=25,
∴CD=5,
在Rt△ABD中AB=15,AD=12,由勾股定理得
BD2=AB2-AD2=152-122=81,
∴CD=9,
∴BC的長為BD+DC=9+5=14;
(2)鈍角△ABC中,AC=13,AB=15,BC邊上高AD=12,
在Rt△ACD中AC=13,AD=12,由勾股定理得
CD2=AC2-AD2=132-122=25,
∴CD=5,
在Rt△ABD中AB=15,AD=12,由勾股定理得
BD2=AB2-AD2=152-122=81,
∴BD=9,
∴BC的長為DB-BC=9-5=4.
故答案為14或4.
點評:本題考查了勾股定理,把三角形斜邊轉(zhuǎn)化到直角三角形中用勾股定理解答.關(guān)鍵是掌握勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點0為AC的中點,OE⊥AB于點E,OE=
32
,以點0為圓心,OA為半徑的圓交AB于點F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點D,B1C1交AC于點E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案