【題目】如圖,在矩形 ABCD中,對(duì)角線 AC 與 BD 相交于點(diǎn) O,過(guò)點(diǎn) A作 BD的垂線,垂足為 E.已知∠EAD=3∠BAE,求∠EAO 的度數(shù)( )
A.22.5°B.67.5°C.45°D.60°
【答案】C
【解析】
首先根據(jù)矩形性質(zhì)得出AO=DO=BO=CO,∠BAD=90°,由此可得∠OAD=∠ODA,∠EAD+∠BAE=90°,然后根據(jù)∠EAD=3∠BAE可以求出∠EAD=67.5°,∠BAE=22.5°,據(jù)此進(jìn)得出∠EDA的度數(shù),最后進(jìn)一步求出答案即可.
∵四邊形ABCD為矩形,
∴AO=DO=BO=CO,∠BAD=90°,
∴∠OAD=∠ODA,∠EAD+∠BAE=90°,
∵∠EAD=3∠BAE,
∴∠EAD=67.5°,∠BAE=22.5°,
在Rt△AED中,∠EDA=90°∠EAD=22.5°,
∴∠OAD=∠EDA=22.5°,
∴∠EAO=∠EAD∠OAD=67.5°22.5°=45°,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB∥CD,直線a交AB、CD分別于點(diǎn)E、F,點(diǎn)M在EF上,P是直線CD上的一個(gè)動(dòng)點(diǎn),(點(diǎn)P不與F重合)
(1)當(dāng)點(diǎn)P在射線FC上移動(dòng)時(shí),∠FMP+∠FPM =∠AEF成立嗎?請(qǐng)說(shuō)明理由。
(2)當(dāng)點(diǎn)P在射線FD上移動(dòng)時(shí),∠FMP+∠FPM與∠AEF有什么關(guān)系?并說(shuō)明你的理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D,連接BD,BE,CE,若∠CBD=32°,則∠BEC的度數(shù)為( )
A.128°
B.126°
C.122°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】補(bǔ)全下列推理過(guò)程:
如圖,已知AB∥CE,∠A=∠E,試說(shuō)明:∠CGD=∠FHB.
解:因?yàn)?/span>AB∥CE(已知),
所以∠A=∠ ( ).
因?yàn)椤?/span>A=∠E(已知),
所以∠ =∠ (等量代換).
所以 ∥ ( ).
所以∠CGD=∠ ( ).
因?yàn)椤?/span>FHB=∠GHE( ),
所以∠CGD=∠FHB(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從數(shù)﹣2,﹣ ,0,4中任取一個(gè)數(shù)記為m,再?gòu)挠嘞碌娜齻(gè)數(shù)中,任取一個(gè)數(shù)記為n,若k=mn,則正比例函數(shù)y=kx的圖象經(jīng)過(guò)第三、第一象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)計(jì)劃把甲種貨物306噸和乙種貨物230噸運(yùn)往某地,已知有A、B兩種不同規(guī)格的貨車共50輛,如果每輛A型貨車最多可裝甲種貨物7噸和乙種貨物3噸,每輛B型貨車最多可裝甲種貨物5噸和乙種貨物7噸.
(1)裝貨時(shí)如何安排A、B兩種貨車的輛數(shù),共有哪些方案?
(2)使用A型車每輛費(fèi)用為600元,使用B型車每輛費(fèi)用800元,上述方案中,哪個(gè)方案運(yùn)費(fèi)最省?最省的運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙O的半徑為1,則直線y=﹣2x+ 與⊙O的位置關(guān)系是( )
A.相離
B.相交
C.相切
D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解“課程選修”的情況,對(duì)報(bào)名參加“藝術(shù)鑒賞”、“科技制作”、“數(shù)學(xué)思維”、“閱讀寫作”這四個(gè)選修項(xiàng)目的學(xué)生(每人限報(bào)一項(xiàng))進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)此次共調(diào)查了名學(xué)生,扇形統(tǒng)計(jì)圖中,“藝術(shù)鑒賞”所對(duì)應(yīng)的圓心角的度數(shù)是度;
(2)請(qǐng)把這個(gè)條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)該校700名學(xué)生報(bào)名參加這四個(gè)選修項(xiàng)目,請(qǐng)你估計(jì)有多少名學(xué)生參加了“數(shù)學(xué)思維”項(xiàng)目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:在平面直角坐標(biāo)系中,點(diǎn)A、B為函數(shù)L圖象上的任意兩點(diǎn),點(diǎn)A坐標(biāo)為(x1 , y1),點(diǎn)B坐標(biāo)為(x2 , y2),把式子 稱為函數(shù)L從x1到x2的平均變化率;對(duì)于函數(shù)K:y=2x2﹣3x+1圖象上有兩點(diǎn)A(x1 , y1)和B(x2 , y2),當(dāng)x1=1,x2﹣x1= 時(shí),函數(shù)K從x1到x2的平均變化率是;當(dāng)x1=1,x2﹣x1= (n為正整數(shù))時(shí),函數(shù)K從x1到x2的平均變化率是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com