【題目】在△ABC中,D是BC邊上的點(不與點B、C重合),連結AD.
(1)如圖1,當點D是BC邊上的中點時,S△ABD:S△ACD=;
(2)如圖2,當AD是∠BAC的平分線時,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代數(shù)式表示)
(3)如圖3,AD平分∠BAC,延長AD到E,使得AD=DE,連接BE,如果AC=2,AB=4,S△BDE=6,那么S△ABC= .
【答案】
(1)1:1
(2)解:
過D作DE⊥AB于E,DF⊥AC于F,
∵AD為∠BAC的角平分線,
∴DE=DF,
∵AB=m,AC=n,
∴SABD:S△ACD=( ×AB×DE):( ×AC×DF)=m:n
(3)9
【解析】解:(1)
過A作AE⊥BC于E,
∵點D是BC邊上的中點,
∴BD=DC,
∴SABD:S△ACD=( ×BD×AE):( ×CD×AE)=1:1,
所以答案是:1:1;
3)
∵AD=DE,
∴由(1)知:S△ABD:S△EBD=1:1,
∵S△BDE=6,
∴S△ABD=6,
∵AC=2,AB=4,AD平分∠CAB,
∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,
∴S△ACD=3,
∴S△ABC=3+6=9,
所以答案是:9.
【考點精析】解答此題的關鍵在于理解角平分線的性質(zhì)定理的相關知識,掌握定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上.
科目:初中數(shù)學 來源: 題型:
【題目】已知一元二次方程x2-x-3=0的較小根為x1 , 則下面對x1的估計正確的是( )
A.-2< x1<-1
B.-3< x1<-2
C.2< x1<3
D.-1< x1<0
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;
(1)小文認為菱形是特殊的“箏形”,你認為他的判斷正確嗎?
(2)小文根據(jù)學習幾何圖形的經(jīng)驗,通過觀察、實驗、歸納、類比、猜想、證明等方法,對AB≠BC的“箏形”的性質(zhì)和判定方法進行了探究.下面是小文探究的過程,請補充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對角相等,并進行了證明,請你完成小文的證明過程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質(zhì),他進一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質(zhì),請再寫出這類“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y= 的圖象經(jīng)過點P(﹣1,﹣1).
(1)求此函數(shù)的表達式;
(2)畫出此函數(shù)在第一象限內(nèi)的圖象.
(3)根據(jù)函數(shù)圖象寫出此函數(shù)的一條性質(zhì).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D是 AB邊上一點,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=α,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點.試探究線段EB與EF的數(shù)量關系.小宇發(fā)現(xiàn)點E的位置,α和β的大小都不確定,于是他從特殊情況開始進行探究.
(1)如圖1,當α=β=90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進而可得△EMF≌△ENB,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關系為 .
(2)如圖2,當α=60°,β=120°時,
①依題意補全圖形;
②請幫小宇繼續(xù)探究(1)的結論是否成立.若成立,請給出證明;若不成立,
請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結論之后,在此基礎上對一般的圖形進行了探究,設∠ABE=γ,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關系滿足(1)中的結論,請直接寫出角α,β,γ滿足的關系:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表給出了代數(shù)式x2+bx+c與x的一些對應值:
x | … | 0 | 1 | 2 | 3 | 4 | … |
x2+bx+c | … | 3 | ﹣1 | 3 | … |
(1)請在表內(nèi)的空格中填入適當?shù)臄?shù);
(2)設y=x2+bx+c,則當x取何值時,y>0;
(3)請說明經(jīng)過怎樣平移函數(shù)y=x2+bx+c的圖象得到函數(shù)y=x2的圖象?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC、AC分別交于D、E兩點,過點D作DF⊥AC,垂足為點F.
(1)求證:DF是⊙O的切線;
(2)若AE=4,cosA= ,求DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com