【題目】拋物線y=ax2+bx+c的頂點為D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根.其中正確的結論有(填序號).

【答案】②③④
【解析】解:∵拋物線與x軸有兩個交點, ∴b2﹣4ac>0,所以①錯誤;
∵頂點為D(﹣1,2),
∴拋物線的對稱軸為直線x=﹣1,
∵拋物線與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,
∴拋物線與x軸的另一個交點在點(0,0)和(1,0)之間,
∴當x=1時,y<0,
∴a+b+c<0,所以②正確;
∵拋物線的頂點為D(﹣1,2),
∴a﹣b+c=2,
∵拋物線的對稱軸為直線x=﹣ =﹣1,
∴b=2a,
∴a﹣2a+c=2,即c﹣a=2,所以③正確;
∵當x=﹣1時,二次函數(shù)有最大值為2,
即只有x=﹣1時,ax2+bx+c=2,
∴方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根,所以④正確.
所以答案是②③④.
【考點精析】關于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關系,需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c)才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中,建立如圖所示的平面直角坐標系,請按要求完成下面的問題:
(1)以圖中的點O為位似中心,將△ABC作位似變換且同向放大到原來的兩倍,得到△A1B1C1;
(2)若△ABC內一點P的坐標為(a,b),則位似變化后對應的點P′的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.“明天降雨的概率是80%”表示明天有80%的時間都在降雨
B.“拋一枚硬幣正面朝上的概率為 ”表示每拋2次就有一次正面朝上
C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎
D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在 附近

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的網格圖中,每個小正方形的邊長均為1個單位,在Rt△ABC中,∠C=90°,AC=3,BC=4.
(1)試在圖中做出△ABC以A為旋轉中心,沿順時針方向旋轉90°后的圖形△AB1C1
(2)若點B的坐標為(﹣3,5),試在圖中畫出平面直角坐標系,并標出A、C兩點的坐標;
(3)根據(jù)(2)的坐標系,以B為位似中心,做△BA2C2 , 使△BA2C2與△ABC位似,且△BA2C2與△ABC位似比為2:1,并直接寫出A2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)y= 的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)點P是x軸上的一動點,試確定點P使PA+PB最小,并求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一三角形的三邊長分別為5、12、13,則此三角形的內切圓半徑為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算: +( 2+| ﹣1|﹣2sin60°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD∥EF,BC∥AD,AC為∠BAD的平分線,圖中與∠AOE相等(不含∠AOE)的角有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

同步練習冊答案