【題目】若點(diǎn)Aa,a+5)在x軸上,則點(diǎn)A到原點(diǎn)的距離為(  )

A.5B.0C.5D.不能確定

【答案】C

【解析】

根據(jù)在x軸上點(diǎn)的坐標(biāo)的特點(diǎn)是縱坐標(biāo)為零,得到a=﹣5即可.

解:∵點(diǎn)Aaa+5)在x軸上,

a+50

解得a=﹣5,

所以,點(diǎn)A的坐標(biāo)為(﹣5,0),

所以,點(diǎn)A到原點(diǎn)的距離為5

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點(diǎn)F,交BC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BE=CD;

(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確的有(

①如果|a|=|b|,那么a=b;

②兩條直線被第三條直線所截,同位角相等;

③如果三條直線兩兩相交,那么可把一個(gè)平面最多分成6個(gè)部分;

④不是對(duì)頂角的角可以相等

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=4,BAD的平分線與BC的延長(zhǎng)線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DGAE,垂足為G,若DG=1,則AE的邊長(zhǎng)為( ).

A.2 B.4 C.4 D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的.其中測(cè)得坡長(zhǎng)AB=600米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為<x>,即當(dāng)n為非負(fù)整數(shù)時(shí),若,則<x>n,如<0.46>=0<3.67>=4。給出下列關(guān)于<x>的結(jié)論:

①<1.493>=1;

②<2x>=2<x>;

,則實(shí)數(shù)x的取值范圍是;

當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),有;

其中,正確的結(jié)論有  (填寫(xiě)所有正確的序號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,直角△ABC中,∠ABC=90°,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過(guò)點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)P,且∠A=∠PDB.
(1)求證:PD是⊙O的切線;
(2)如圖2,點(diǎn)M是 的中點(diǎn),連接DM,交AB于點(diǎn)N,若tan∠A= ,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程解應(yīng)用題:

為了提高產(chǎn)品的附加值,某公司計(jì)劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場(chǎng).現(xiàn)有甲、乙兩個(gè)工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個(gè)工廠了解情況,獲得如下信息:

信息一:甲工廠單獨(dú)加工完成這批產(chǎn)品比乙工廠單獨(dú)加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5.

根據(jù)以上信息,求甲、乙兩個(gè)工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,任意一個(gè)正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對(duì)值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=

例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=

⑴如果一個(gè)正整數(shù)m是另外一個(gè)正整數(shù)n的平方,我們稱正整數(shù)m是完全平方數(shù).

求證:對(duì)任意一個(gè)完全平方數(shù)m,總有F(m)=1;

⑵如果一個(gè)兩位正整數(shù)t,t =10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個(gè)位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來(lái)的兩位正整數(shù)所得的差為54,那么我們稱這個(gè)數(shù)t為“吉祥數(shù)”,求所有的“吉祥數(shù)”;

⑶在⑵所得“吉祥數(shù)”中,求 F(t)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案