【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E.
(1)當∠BDA=110°時,∠EDC= °,∠DEC= °;點D從B向C的運動過程中,∠BDA逐漸變 (填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由.
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù),若不可以,請說明理由.
【答案】(1)30,110,;(2)當DC=2時,△ABD≌△DCE,理由詳見解析;(3)當∠BDA=80°或110°時,△ADE的形狀可以是等腰三角形.
【解析】
(1)利用鄰補角的性質(zhì)和三角形的外角等于不相鄰的兩內(nèi)角和這一性質(zhì)解題,
(2)當DC=2時,利用∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE求出
∠BAD=∠CDE,再利用AB=CD=2,∠B=∠C=40°得出△ABD≌△DCE.
(3)假設(shè)△ADE是等腰三角形,分兩種情況,分別討論求得符合題意的解.
解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,
∴∠EDC=30°,
∵∠AED=∠EDC+∠ACB=30°+40°=70°
∴∠EDC=180°﹣∠AED=110°,
故答案為:30,110,
∵∠BDA+∠B+∠BAD=180°,
∴∠BDA=140°﹣∠BAD
∵點D從B向C的運動過程中,∠BAD逐漸變大
∴∠BDA逐漸變小,
故答案為:小
(2)當DC=2時,△ABD≌△DCE,
理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,
∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,
∴△ABD≌△DCE(ASA)
(3)若AD=DE時,
∵AD=DE,∠ADE=40°
∴∠DEA=∠DAE=70°
∵∠DEA=∠C+∠EDC
∴∠EDC=30°
∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°
若AE=DE時,
∵AE=DE,∠ADE=40°
∴∠ADE=∠DAE=40°,
∴∠AED=100°
∵∠DEA=∠C+∠EDC
∴∠EDC=60°
∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°
綜上所述:當∠BDA=80°或110°時,△ADE的形狀可以是等腰三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為鼓勵學生參加體育鍛煉,學校計劃拿出不超過3200元的資金購買一批籃球和
排球,已知籃球和排球的單價比為3:2,單價和為160元.
(1)籃球和排球的單價分別是多少元?
(2)若要求購買的籃球和排球的總數(shù)量是36個,且購買的排球數(shù)少于11個,有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是某中學足球冠軍杯第一階段組賽不完整的積分表.組共個隊,每個隊分別與其它個隊進行主客場比賽各一場,即每個隊都要進行場比賽.每隊每場比賽積分都是自然數(shù).(總積分勝場積分平場積分負場積分)
球隊 | 比賽場次 | 勝場次數(shù) | 平場次數(shù) | 負場次數(shù) | 總積分 |
戰(zhàn)神隊 | |||||
旋風隊 | |||||
龍虎隊 | |||||
夢之隊 |
本次足球小組賽中,平一場積___________分,夢之隊總積分是___________分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,,射線繞點從射線位置開始按順時針方向以每秒的速度旋轉(zhuǎn),到停止;同時射線繞點從射線位置開始按逆時針方向以每秒的速度旋轉(zhuǎn).
設(shè)當旋轉(zhuǎn)時間為秒時,為().
(1)填空:當秒,求_____________;
(2)若,且時,求的值;
(3)若射線旋轉(zhuǎn)到后立即返回,按順時針方向旋轉(zhuǎn),到停止.用含的式子表示.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,函數(shù)的圖象與直線y=x-2交于點A(a,1).
(1)求a,k的值;
(2)已知點P(m,0)(1≤m< 4),過點P作平行于y軸的直線,交直線y=x-2于點M (x1,y1),交函數(shù)的圖象于點N(x1,y2),結(jié)合函數(shù)的圖象,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點D是拋物線 的頂點,拋物線與x軸交于點A,B(點A在點B的左側(cè)).
(1)求點A,B的坐標;
(2)若M為對稱軸與x軸交點,且DM=2AM,求拋物線表達式;
(3)當30°<∠ADM<45°時,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】己知:如圖,在菱形ABCD中,點E、F分別在邊BC、CD,∠BAF=∠DAE,AE與BD交于點G.
(1)求證:BE=DF;
(2)若,求證:四邊形BEFG是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖象交于A(﹣2,b),B兩點.
(1)求一次函數(shù)的表達式;
(2)若將直線AB向下平移m(m>0)個單位長度后與反比例函數(shù)的圖象有且只有一個公共點,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com