【題目】絕對(duì)值大于2且小于5的所有整數(shù)的和是(
A.0
B.7
C.14
D.28

【答案】A
【解析】解:絕對(duì)值大于2且小于5的所有整數(shù)是:﹣4,﹣3,3,4.則﹣4+(﹣3)+3+4=0
故選A.
【考點(diǎn)精析】利用有理數(shù)的加法法則和絕對(duì)值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知有理數(shù)加法法則:1、同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加2、異號(hào)兩數(shù)相加,取絕對(duì)值較大的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值3、一個(gè)數(shù)與0相加,仍得這個(gè)數(shù);正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤做游戲(每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)運(yùn)甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請(qǐng)用列表或畫樹(shù)狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)分別求出李燕和劉凱獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn)求值、解方程
(1)先化簡(jiǎn)(x+1﹣ )÷ ,再取一個(gè)你認(rèn)為合理的x值,代入求原式的值.
(2)解方程: +3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,A24),B(﹣2,3),C4,﹣1),將線段AB平移得到線段CD,其中點(diǎn)A的對(duì)應(yīng)點(diǎn)是C,則點(diǎn)B的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為(

A.(﹣4,8B.4,﹣8C.02D.0,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)(a,1)與(﹣2,b)關(guān)于原點(diǎn)對(duì)稱,則a+b_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)籌集資金12.8萬(wàn)元,一次性購(gòu)進(jìn)空調(diào)、彩電共30臺(tái).根據(jù)市場(chǎng)需要,這些空調(diào)、彩電可以全部銷售,全部銷售后利潤(rùn)不少于1.5萬(wàn)元,其中空調(diào)、彩電的進(jìn)價(jià)和售價(jià)見(jiàn)表格.

空調(diào)

彩電

進(jìn)價(jià)(元/臺(tái))

5400

3500

售價(jià)(元/臺(tái))

6100

3900

設(shè)商場(chǎng)計(jì)劃購(gòu)進(jìn)空調(diào)x臺(tái),空調(diào)和彩電全部銷售后商場(chǎng)獲得的利潤(rùn)為y元.
(1)試寫出y與x的函數(shù)關(guān)系式;
(2)商場(chǎng)有哪幾種進(jìn)貨方案可供選擇?
(3)選擇哪種進(jìn)貨方案,商場(chǎng)獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果從一個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)作它的對(duì)角線,最多能將多邊形分成2011個(gè)三角形,那么這個(gè)多邊形是 ( )

A. 2012邊形 B. 2013邊形 C. 2014邊形 D. 2015邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以菱形的對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn),所在的直線為軸,已知,,為折線上一動(dòng)點(diǎn),內(nèi)行軸于點(diǎn),設(shè)點(diǎn)的縱坐標(biāo)為

(1)邊所在直線的解析式;

(2)設(shè),求關(guān)于的函數(shù)關(guān)系式;

(3)當(dāng)為直角三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】m=2a-1,n=3m,則a+m+n等于(

A.9a-1B.9a-2C.9a-3D.9a-4

查看答案和解析>>

同步練習(xí)冊(cè)答案