【題目】已知關(guān)于x的一元二次方程 kx2+(2k1)xk20

1)若該方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;

2)若該方程的兩根x1x2滿足=-3,求k的值.

【答案】(1) kk0 2-5

【解析】

1)由x的一元二次方程kx2+2k+1x+k+2=0的兩個(gè)實(shí)數(shù)根是x1x2,可得k≠00即可求出k的取值范圍,
2)根據(jù)根與系數(shù)的關(guān)系及=-3,即可求出k的值.

1)∵方程有兩個(gè)不相等的實(shí)數(shù)根,
k≠0=2k+12-4kk+2)>0
解得:kk≠0,
k的取值范圍:kk≠0
2)∵一元二次方程kx2+2k+1x+k+2=0的兩個(gè)實(shí)數(shù)根是x1x2,
x1+x2=-,x1x2=,
=-3
=-3,
=-3,
解得:k=-5
k的值是-5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解九年級(jí)學(xué)生的體育達(dá)標(biāo)情況,隨機(jī)抽取名九年級(jí)學(xué)生進(jìn)行體育達(dá)標(biāo)項(xiàng)目測(cè)試,測(cè)試成績(jī)?nèi)缦卤,?qǐng)根據(jù)表中的信息,解答下列問(wèn)題:

測(cè)試成績(jī)(分)

人數(shù)(人)

1)該校九年級(jí)有名學(xué)生,估計(jì)體育測(cè)試成績(jī)?yōu)?/span>分的學(xué)生人數(shù);

2)該校體育老師要對(duì)本次抽測(cè)成績(jī)?yōu)?/span>分的甲、乙、丙、丁名學(xué)生進(jìn)行分組強(qiáng)化訓(xùn)練,要求兩人一組,求甲和乙恰好分在同一組的概率.(用列表或樹(shù)狀圖方法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次數(shù)學(xué)活動(dòng)課中,某數(shù)學(xué)小組探究求環(huán)形花壇(如圖所示)面積的方法,現(xiàn)有以下工具;①卷尺;②直棒EF;T型尺(CD所在的直線垂直平分線段AB).

(1)在圖1中,請(qǐng)你畫(huà)出用T形尺找大圓圓心的示意圖(保留畫(huà)圖痕跡,不寫(xiě)畫(huà)法);

(2)如圖2,小華說(shuō):我只用一根直棒和一個(gè)卷尺就可以求出環(huán)形花壇的面積,具體做法如下:

將直棒放置到與小圓相切,用卷尺量出此時(shí)直棒與大圓兩交點(diǎn)M,N之間的距離,就可求出環(huán)形花壇的面積如果測(cè)得MN=10m,請(qǐng)你求出這個(gè)環(huán)形花壇的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線y=x﹣2m2+3m﹣1m是常數(shù))與直線y=x+1有兩個(gè)交點(diǎn),且這兩個(gè)交點(diǎn)分別在拋物線對(duì)稱(chēng)軸的兩側(cè),則m的取值范圍是( )

A.m2B.m2C.mD.m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面內(nèi),給定不在同一直線上的點(diǎn)A,B,C,如圖所示.點(diǎn)O到點(diǎn)AB,C的距離均等于a(a為常數(shù)),到點(diǎn)O的距離等于a的所有點(diǎn)組成圖形G,∠ABC的平分線交圖形G于點(diǎn)D,連接AD,CD.

(1)求證:AD=CD.

(2)過(guò)點(diǎn)DDEBA,垂足為E,作DFBC,垂足為F,延長(zhǎng)DF交圖形G于點(diǎn)M,連接CM.AD=CM,判斷直線DE與圖形G的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解題時(shí),最容易想到的方法未必是最簡(jiǎn)單的,你可以再想一想,盡量?jī)?yōu)化解法.

例題呈現(xiàn)

關(guān)于x的方程a(xm)2b0的解是x11x2=-2a、mb均為常數(shù),a0),則方程a(xm2)2b0的解是 

解法探討

1)小明的思路如圖所示,請(qǐng)你按照他的思路解決這個(gè)問(wèn)題;

小明的思路

第1步 把1、-2代入到第1個(gè)方程中求出m的值;

第2步 把m的值代入到第1個(gè)方程中求出的值;

第3步 解第2個(gè)方程.

2)小紅仔細(xì)觀察兩個(gè)方程,她把第2個(gè)方程a(xm2)2b0中的“x2”看作第1個(gè)方程中的“x”,則“x2”的值為  ,從而更簡(jiǎn)單地解決了問(wèn)題.

策略運(yùn)用

3)小明和小紅認(rèn)真思考后發(fā)現(xiàn),利用方程結(jié)構(gòu)的特點(diǎn),無(wú)需計(jì)算“根的判別式”就能輕松解決以下問(wèn)題,請(qǐng)用他們說(shuō)的方法完成解答.

已知方程 (a22b2)x2+(2b22c2)x2c2a20有兩個(gè)相等的實(shí)數(shù)根,其中a、bc是△ABC三邊的長(zhǎng),判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BE,CD分別是邊AC、AB上的中線,BECD相交于點(diǎn)O,BE6,則OE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)MN;

3)連接OMMN

根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的一元二次方程x2+2k+1x+k2+1=0有兩個(gè)不等實(shí)根x1、x2

1)求實(shí)數(shù)k的取值范圍

2)若方程兩實(shí)根x1x2滿足x1+x2=﹣x1x2,k的值

查看答案和解析>>

同步練習(xí)冊(cè)答案