拋物線的頂點(diǎn)坐標(biāo)為( )
A.(0,-3)
B.(2,-3)
C.(0,-1)
D.(-2,-3)
【答案】分析:直接根據(jù)二次函數(shù)的頂點(diǎn)式進(jìn)行解答即可.
解答:解:由函數(shù)y=(x+2)2-3的解析式可知,此拋物線的頂點(diǎn)坐標(biāo)為(-2,-3).
故選D.
點(diǎn)評(píng):本題考查的是二次函數(shù)的性質(zhì),熟知二次函數(shù)的三種形式是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,Rt△AOB的頂點(diǎn)坐標(biāo)分別為A(0,2),O(0,0),B(4,0),把△AOB繞點(diǎn)O逆時(shí)針?lè)较蛐D(zhuǎn)90°得到△COD(點(diǎn)A轉(zhuǎn)到點(diǎn)C的位置),拋物精英家教網(wǎng)線=ax2+bx+c(a≠0)經(jīng)過(guò)C、D、B三點(diǎn).注:拋物線的頂點(diǎn)坐標(biāo)為
(-
b
2a
,
4ac-b2
4a

(1)求拋物線的解析式;
(2)若拋物線的頂點(diǎn)為P,△PAB的面積;
(3)在拋物線上是否存在點(diǎn)M,使△MBC的面積等于△PAB的面積?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
(1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
(2)求經(jīng)過(guò)B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
(3)若點(diǎn)P在拋物線的對(duì)稱軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過(guò)點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線的頂點(diǎn)坐標(biāo)為M(1,4),且經(jīng)過(guò)點(diǎn)N(2,3),與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式及點(diǎn)A、B、C的坐標(biāo);
(2)直線AN交y軸于點(diǎn)F,P是拋物線的對(duì)稱軸x=1上動(dòng)點(diǎn),H是X軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的P、H,使四邊形CFHP的周長(zhǎng)最短?若存在,請(qǐng)求出四邊形CFHP的最短周長(zhǎng)和點(diǎn)P、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q是∠MDB的角平分線上動(dòng)點(diǎn),點(diǎn)R是線段DB上的動(dòng)點(diǎn),Q、R在何位置時(shí),BQ+QR的值最小.請(qǐng)直接寫(xiě)出BQ+QR的最小值和Q、R的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=x2-4x+3的圖象向右平移2個(gè)單位長(zhǎng)度后所得新的拋物線的頂點(diǎn)坐標(biāo)為
(4,-1)
(4,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將拋物線y=x2向上平移1個(gè)單位,則平移后的拋物線的頂點(diǎn)坐標(biāo)為
(0,1)
(0,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案