在△ABC中,AB=BC,∠ABC=120°,將△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)α,其中0°<α<90°得△A1BC1,A1B交AC與點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)在旋轉(zhuǎn)過程中,線段EA1與FC有怎樣的數(shù)量關(guān)系?證明你的結(jié)論;
(2)當(dāng)α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.

解:(1)EA1=FC.理由如下:
∵AB=BC,∠ABC=120°,
∴∠A=∠C=30°,
∵△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)α,其中0°<α<90°得△A1BC1
∴∠ABE=∠FBC1=α,∠C1=∠C=30°,BC1=BC,BA=BA1,
∴BA=BC1,
在△BAE和△BC1F中

∴△BAE≌△BC1F,
∴BE=BF,
∵BA1=BC=BA,
∴EA1=FC;
(2)四邊形BC1DA為菱形.理由如下:
∵α=30°,
∴∠ABA1=∠CBC1=30°,
而∠A1=∠C=30°,
∴∠ABA1=∠A1,∠CBC1=∠C,
∴AB∥A1C1,BC1∥AC,
∴四邊形BC1DA為平行四邊形,
∵BA=BC1,
∴四邊形BC1DA為菱形.
分析:(1)根據(jù)等腰三角形的性質(zhì)可得∠A=∠C=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)可得到∠ABE=∠FBC1=α,∠C1=∠C=30°,BC1=BC,BA=BA1,則BA=BC1,根據(jù)三角形判定方法易得△BAE≌△BC1F,得到BE=BF,又BA1=BC=BA,即可得到EA1=FC;
(2)當(dāng)α=30°時,∠ABA1=∠CBC1=30°,而∠A1=∠C=30°,則∠ABA1=∠A1,∠CBC1=∠C,根據(jù)平行線的判定方法得到AB∥A1C1,BC1∥AC,得到四邊形BC1DA為平行四邊形,由BA=BC1,根據(jù)菱形的判定方法即可得到四邊形BC1DA為菱形.
點(diǎn)評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角.也考查了平行線的判定與性質(zhì)以及菱形的判定方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寧德質(zhì)檢)如圖,在△ABC中,AB=AC=6,點(diǎn)0為AC的中點(diǎn),OE⊥AB于點(diǎn)E,OE=
32
,以點(diǎn)0為圓心,OA為半徑的圓交AB于點(diǎn)F.
(1)求AF的長;
(2)連結(jié)FC,求tan∠FCB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•襄陽)如圖,在△ABC中,AB=AC,AD⊥BC于點(diǎn)D,將△ADC繞點(diǎn)A順時針旋轉(zhuǎn),使AC與AB重合,點(diǎn)D落在點(diǎn)E處,AE的延長線交CB的延長線于點(diǎn)M,EB的延長線交AD的延長線于點(diǎn)N.
求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=AC,把△ABC繞著點(diǎn)A旋轉(zhuǎn)至△AB1C1的位置,AB1交BC于點(diǎn)D,B1C1交AC于點(diǎn)E.求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱湖區(qū)一模)如圖,在△ABC中,AB是⊙O的直徑,∠B=60°,∠C=70°,則∠BOD的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•吉林)如圖,在△ABC中,AB=AC,D為邊BC上一點(diǎn),以AB,BD為鄰邊作?ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)若BD=CD,求證:四邊形ADCE是矩形.

查看答案和解析>>

同步練習(xí)冊答案