【題目】下列計算正確的是( )
A. 2a×3a=6a B. (-2a)3=-6a3
C. 6a÷(2a)=3a D. (-a3)2=a6
科目:初中數學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,Ab=6cm,BC=8cm,對角線AC,BD交于點0.點P從點A出發(fā),沿方向勻速運動,速度為1cm/s;同時,點Q從點D出發(fā),沿DC方向勻速運動,速度為1cm/s;當一個點停止運動時,另一個點也停止運動.連接PO并延長,交BC于點E,過點Q作QF∥AC,交BD于點F.設運動時間為t(s)(0<t<6),解答下列問題:
(1)當t為何值時,△AOP是等腰三角形?
(2)設五邊形OECQF的面積為S(cm2),試確定S與t的函數關系式;
(3)在運動過程中,是否存在某一時刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請說明理由;
(4)在運動過程中,是否存在某一時刻t,使OD平分∠COP?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線與x軸交于A,B兩點(A在B的左側),與y軸交于點C,頂點為D.
(1)請直接寫出點A,C,D的坐標;
(2)如圖(1),在x軸上找一點E,使得△CDE的周長最小,求點E的坐標;
(3)如圖(2),F(xiàn)為直線AC上的動點,在拋物線上是否存在點P,使得△AFP為等腰直角三角形?若存在,求出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016四川省資陽市)已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數軸上,A點和B點所表示的數分別為-2和1,若使A點表示的數是B點表示的數的3倍,應把A點 ( )
A.向左移動5個單位
B.向右移動5個單位
C.向右移動4個單位
D.向左移動1個單位或向右移動5個單位
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=2x2向上平移3個單位,再向右平移2個單位,得到的拋物線是( 。
A.y=2(x+2)2﹣3B.y=2(x+2)2+3
C.y=2(x﹣2)2﹣3D.y=2(x﹣2)2+3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線(a≠0)與x軸交于點A(﹣5,0)和點B(3,0),與y軸交于點C.
(1)求該拋物線的解析式;
(2)若點E為x軸下方拋物線上的一動點,當S△ABE=S△ABC時,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我市為迎接省運會,要將某一城市美化工程招標,有甲、乙兩個工程隊投標,經測算:甲隊單獨完成這項工程需要60天,若由甲隊先做20天,剩下的工程由甲、乙合作24天可完成.
(1)乙隊單獨完成這項工程需要多少天?
(2)甲隊施工一天,需付工程款3.5萬元,乙隊施工一天需付工程款2萬元.若該工程計劃在70天內完成,在不超過計劃天數的前提下,是由甲隊或乙隊單獨完成工程省錢?還是由甲乙兩隊全程合作完成該工程省錢?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com