【題目】如圖,反比例函數(shù)y=(k≠0,x>0)的圖象與直線y=4x相交于點C,過直線上點A(2,a)作AB⊥x軸于點B,交反比例函數(shù)圖象于點D,且AB=4BD.
(1)求a的值;
(2)求k的值;
(3)連接OD,CD,求△OCD的面積.
【答案】(1)a=8;(2)k=4;(3)△OCD的面積=3.
【解析】
(1)根據(jù)A在直線y=4x上,即可求出a的值;
(2)把A點的坐標(biāo)代入反比例函數(shù)解析式y=(k≠0,x>0),即可求得k的值;
(3)因為C是直線和雙曲線的交點,聯(lián)立成方程組,即可求出C點的坐標(biāo);再利用面積的割補法即可求出答案.
(1)把A(2,a)代入y=4x得a=4×2=8;
(2)∵AB=4BD,
∴BD=2,AD=6
∴D(2,2),
把D(2,2)代入y=得k=2×2=4,
∴反比例函數(shù)解析式為y=;
(3)解方程組
得,
得或(舍),
則C(1,4),
∴△OCD的面積=S△AOB﹣S△ACD﹣S△BOD
=×2×8﹣×6×1﹣×2×2
=3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=,BC=2,以AB的中點為圓心,OA的長為半徑作半圓交AC于點D,則圖中陰影部分的面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,航模小組用無人機來測量建筑物BC的高度,無人機從A處測得建筑物頂部B的仰角為45°,測得底部C的俯角為60°,若此時無人機與該建筑物的水平距離AD為30m,則該建筑物的高度BC為_____m.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎侵襲全國,全國人民團齊心協(xié)力共抗疫情.小明同學(xué)一直關(guān)注疫情的變化,期待疫情結(jié)束早日復(fù)課,他主要關(guān)注近一個月新增確診病例和現(xiàn)有確診病例的情況,如圖1、圖2所示,反映的是2020年2月22日至3月23日的新增確診病例和現(xiàn)有確診病例的情況.
對2月22日至3月23日近一個月內(nèi)數(shù)據(jù),下面有四個推斷
①全國新增境外輸人確診病例呈上升趨勢;
②全國一天內(nèi)新增確診人數(shù)最多約650人;
③全國總新增確診人數(shù)減少,全國現(xiàn)有確診人數(shù)增加;
④全國一日新增確診人數(shù)的中位數(shù)約為400.
其中合理推斷的序號是( )
A.①②B.①④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標(biāo)為(1,n),則下列結(jié)論:
①2a+b<0;
②﹣1≤a≤﹣;
③對于任意實數(shù)m,a(m2﹣1)+b(m﹣1)≤0總成立;
④關(guān)于x的方程ax2+bx+c=n+1有兩個不相等的實數(shù)根.
其中結(jié)論正確的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直角三角形ABC的頂點A的坐標(biāo)為(-2,1),頂點B的坐標(biāo)為(-5,4),將△ABC向右平移5個單位,再向下平移3個單位后得到.
(1)請直接寫出點C的坐標(biāo);
(2)請畫出;
(3)若點P在x軸上,且與△ABC的面積相等,直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山東省煙臺市)某中學(xué)廣場上有旗桿如圖1所示,在學(xué)習(xí)解直角三角形以后,數(shù)學(xué)興趣小組測量了旗桿的高度.如圖2,某一時刻,旗桿AB的影子一部分落在平臺上,另一部分落在斜坡上,測得落在平臺上的影長BC為4米,落在斜坡上的影長CD為3米,AB⊥BC,同一時刻,光線與水平面的夾角為72°,1米的豎立標(biāo)桿PQ在斜坡上的影長QR為2米,求旗桿的高度(結(jié)果精確到0.1米).(參考數(shù)據(jù):sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC為等邊三角形, M為三角形外任意一點,把△ABM繞著點A按逆時針方向旋轉(zhuǎn)60°到△CAN的位置.
(1)如圖①,若∠BMC=120°,BM=2,MC=3.求∠AMB的度數(shù)和求AM的長.
(2)如圖②,若∠BMC = n°,試寫出AM、BM、CM之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形ABCD被分割成兩個小梯形①②,和一個小正方形③,去掉③后,①和②可剪拼成一個新的梯形,若EF﹣AD=2,BC﹣EF=1,則AB的長是( )
A.6B.3C.9D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com