【題目】如圖,△ABC中,∠BAC=90°,AD⊥BC,垂足為D.
(1)求作∠ABC的平分線(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若∠ABC的平分線分別交AD,AC于P,Q兩點(diǎn),證明:AP=AQ.
【答案】(1)(2)見解析
【解析】試題分析:(1)作出角平分線BQ即可.
(2)根據(jù)余角的定義得出∠AQP+∠ABQ=90°,根據(jù)角平分線的性質(zhì)得出∠ABQ=∠PBD,再由∠BPD=∠APQ可知∠APQ=∠AQP,據(jù)此可得出結(jié)論.
試題解析:解:(1)BQ就是所求的∠ABC的平分線,P、Q就是所求作的點(diǎn).
(2)證明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.
∵∠BAC=90°,∴∠AQP+∠ABQ=90°.
∵∠ABQ=∠PBD,∴∠BPD=∠AQP.
∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),AOD=120, AOC=90,OE平分BOD,則圖中彼此互補(bǔ)的角共有( )
A. 4對(duì) B. 5對(duì) C. 6對(duì) D. 7對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠ACB=90°,AC=BC=
(1)作⊙O,使它過點(diǎn)A、B、C(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)所作的圓中,圓心角∠BOC=°,圓的半徑為 , 劣弧 的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)E在BC的延長(zhǎng)線上,的平分線BD與的平分線CD相交于點(diǎn)D,連接AD,則下列結(jié)論中,正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在活動(dòng)課上,小明和小紅合作用一副三角板來測(cè)量學(xué)校旗桿高度.已知小明的眼睛與地面的距離(AB)是1.7m,他調(diào)整自己的位置,設(shè)法使得三角板的一條直角邊保持水平,且斜邊與旗桿頂端M在同一條直線上,測(cè)得旗桿頂端M仰角為45°;小紅眼睛與地面的距離(CD)是1.5m,用同樣的方法測(cè)得旗桿頂端M的仰角為30°.兩人相距28米且位于旗桿兩側(cè)(點(diǎn)B、N、D在同一條直線上).求出旗桿MN的高度.(參考數(shù)據(jù): , ,結(jié)果保留整數(shù).)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于O點(diǎn),過點(diǎn)O作BC的平行線交AB于M點(diǎn),交AC于N點(diǎn),則△AMN的周長(zhǎng)為( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC=2 ,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點(diǎn)恰好落在對(duì)角線AC上的B′處,則AB= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OA平分∠EOC.
(1)若∠EOC=70°,求∠BOD的度數(shù);
(2)若∠EOC:∠EOD=2:3,求∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,O′,記旋轉(zhuǎn)角為α.
(1)如圖①,若α=90°,求AA′的長(zhǎng);
(2)如圖②,若α=120°,求點(diǎn)O′的坐標(biāo);
(3)在(Ⅱ)的條件下,邊OA上 的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo)(直接寫出結(jié)果即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com